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Abstract
Biomarkers play an integral part in conducting clinical trials and treating patients. In most instances, they help 
medical practitioners, researchers, and regulatory officials make well-informed, scientifically sound decisions. 
However, in clinical studies, there is often uncertainty in how much weight to place on biomarker results versus 
clinical outcomes. This uncertainty emanates from opposing goals of the drug approval process. On one hand, 
the process must ensure that all therapeutics tested are safe and that the benefits outweigh the risks. On the 
other hand, the process should allow therapies to be accessible to patients as quickly as reasonably possible.  
Judicious use of biomarkers in the drug development process can bring these goals into alignment. More efficient 
discovery and use of biomarkers in the development of antidiabetes drugs will depend on advancing our 
understanding of the pathogenesis of diabetes and especially its macrovascular complications.
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At a joint meeting of the Food and Drug Administration 
(FDA) Endocrinologic and Metabolic Drugs Advisory 
Committee and the Drug Safety and Risk Management 
Advisory Committee on the drug Avandia, a panelist stated 
that “the road to regulatory hell is paved with surrogates.”1 
While this statement may accurately reflect the state 
of affairs in clinical trials for new antidiabetes agents, 
hopefully the sentiment will be short-lived.

The Biomarkers Definitions Working Group defined a bio-
marker as “a characteristic that is objectively measured and 
evaluated as an indicator of normal biologic processes, 
pathogenic processes, or pharmacologic responses to a 
therapeutic intervention.”2 Diabetes clinical trials have 
long relied on biomarkers for proving efficacy of study 
drugs. Although hemoglobin A1c (HbA1c) was first 
separated from other forms of hemoglobin by Huisman 
and colleagues3 in 1958 using a chromatographic column, 

its use for monitoring the degree of control of glucose 
metabolism in diabetes patients was first proposed in 
1976 by Koenig and coworkers.4 Managing diabetes based 
on HbA1c levels as a reflection of glycemic control was 
validated in 1990 by Larsen and associates.5 Since then, 
regulatory agencies have widely embraced HbA1c as the 
biomarker of choice for proving efficacy in clinical trials 
for antidiabetes drugs. For example, the FDA’s Guidance 
for Industry states that “for purposes of drug approval 
and labeling, final demonstration of efficacy should be  
based on reduction in HbA1c (i.e., HbA1c is the primary 
endpoint of choice, albeit a surrogate), which will support 
an indication of glycemic control.”6

It is clear that HbA1c is far from a perfect biomarker.  
For example, levels of postprandial glucose,7 as well 
as acute fluctuations in glucose levels,8 may be better 
predictors of cardiovascular disease in diabetes compared 
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with levels of HbA1c. However, the FDA guidance states 
that new drugs whose mechanism of action is restricted 
to effects on postprandial glucose should be tested in 
dose-finding, proof-of-principle, short-term oral glucose  
studies. Such demonstrations of pharmacodynamic activity  
are not sufficient evidence of efficacy for new drug 
application approval, because the link between modifying 
effects on postprandial glucose excursions to clinical 
outcomes is not sufficiently strong enough to consider the 
use of this pharmacodynamic endpoint as a surrogate for 
efficacy.6 Clearly, the relationship between hyperglycemia 
and clinical outcomes must be better understood in 
order for regulatory guidance to evolve from its current 
state, in which approval is based on a drug’s ability 
to lower HbA1c without inducing a signal for excess 
cardiovascular risk (discussed here).

It has been assumed that tight blood glucose control 
would lead to lower rates of both microvascular and 
macrovascular complications of diabetes. This assumption 
was in large part due to the well-established fact that, 
as HbA1c rises, the risk of cardiovascular and all-cause 
mortality also rises.9 Although the U.K. Prospective 
Diabetes Study documented the role of glycemic 
control in lessening microvascular disease in type 2 
diabetes mellitus (T2DM),10 a reduction in myocardial 
infarction and all-cause mortality was seen only in the 
intensive treatment group after long-term followup.11 
Because of the high rates of cardiovascular disease in 
those with T2DM, other studies were undertaken to 
explore the relationship between glycemic control and 
cardiovascular risk. Unfortunately, these trials, such 
as the Veteran’s Affairs Diabetes Trial of Glycemic  
Control and Complications in Diabetes Mellitus Type 2, 
the Action to Control Cardiovascular Risk in Diabetes 
trial, and the Action in Diabetes and Vascular Disease: 
Preterax and Dimicron MR Controlled Evaluation trial, 
largely failed to show a beneficial effect of intensive 
versus conventional diabetes therapy on cardiovascular 
outcomes in subjects with long-standing diabetes.12–14

The lack of clarity around the relationship between 
glycemic control, macrovascular events, and survival in  
diabetes plays a central role in the firestorm of 
controversy concerning the possible relationship between 
rosiglitazone (Avandia) use and increased cardiovascular 
risk. Rosiglitazone is associated with statistically significant 
increases in total cholesterol, low-density lipoprotein (LDL), 
high-density lipoprotein (HDL), and decreases in free 
fatty acids; however, in 1999 when rosiglitazone was 
approved for use in the United States, most thought 
that lowering HbA1c would be protective against 

cardiovascular disease and trump effects on the lipid 
profile, or at least be partially offset with the addition of 
concomitant statin therapy.

The relationship between diabetes treatment, HbA1c, 
lipid levels, cardiac outcomes, and survival very likely 
exceeds the complexity level that our current knowledge 
base allows us to comprehend. As more metabolic 
syndrome features are added into the equation, the level 
of complexity increases. Simplistic assumptions about 
the fidelity with which a biomarker reports on a disease 
process are sometimes incorrect and typically incomplete. 
In fact, biomarkers may fail to be reliable indicators of 
a biological process or therapeutic intervention for a 
number of reasons.15 Chief among these is that a drug 
may exert unanticipated effects through other known 
or unknown biological pathways than those measured 
by the biomarker. The Cardiac Arrhythmia Suppression 
Trial (CAST) serves as a vivid example of this concept. 
Because ventricular arrhythmia is known to be associated 
with an increased risk for cardiovascular death, it was 
reasonable to hypothesize that suppression of such 
arrhythmias after myocardial infarction would reduce 
mortality. However, the results from the CAST showed 
that successful suppression of ventricular arrhythmias 
(in this case, ventricular ectopy was the biomarker) with 
encainide, flecainide, and moricizine was associated 
with an increased risk of death.16 Similarly, it is useful 
to revisit the spectacular phase III failure of torcetrapib. 
Torcetrapib is a cholesteryl ester transfer protein inhibitor 
and raises HDL levels. The ILLUMINATE study combined 
torcetrapib with atorvastatin; the decreases in LDL 
combined with increases in HDL were expected to 
revolutionize therapy for hyperlipidemia. The study was 
successful from a biomarker standpoint: a significant 
increase in HDL cholesterol (72%) and a decrease in 
LDL cholesterol (25%) were seen after 12 months of 
torcetrapib therapy.17 The biomarker results from the 
ILLUMINATE study should have predicted clinical 
success. Unfortunately, however, the trial was terminated 
after only 1.5 years (median) of treatment due to a higher 
mortality rate in the torcetrapib + atorvastatin arm 
compared with the atorvastatin-only group.17 Off-target 
effects of torcetrapib on blood pressure and the renin–
angiotensin–aldosterone system may be part of the 
explanation, though it seems likely that assumptions about 
HDL, LDL, and cardiovascular disease are flawed.

The uncertainty around the reliability of HbA1c as the 
pivotal biomarker to assess the efficacy of antidiabetes 
drug candidates has resulted in a new regulatory 
guidance by both the FDA and the European Medicines 
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Agency.18,19 These mandate that sponsors demonstrate 
acceptable cardiovascular risk by meta-analysis and/or 
a large outcomes-based clinical trial. This directive is 
understandable from a regulatory perspective, but an 
unintended consequence may be that fewer diabetes 
drugs will be developed due to the substantial increase 
in development costs associated with the regulatory 
guidance.20,21 Given the alarming rate of increase in the 
global incidence of diabetes, barriers to drug development 
in this area can ill be afforded from a public health 
perspective. The way forward is clearly to identify 
biomarkers that serve as reliable surrogates for clinical 
outcomes in diabetes rather than simply glycemic control. 
Because cardiovascular disease accounts for such a 
large proportion of morbidity and mortality in diabetes,  
useful biomarkers will need to predict outcomes such as 
ischemic cardiac disease, heart failure, and stroke.

The discovery of cardiovascular biomarkers has progressed 
significantly as our understanding of the pathogenesis of 
ischemic cardiovascular disease expands. The Framingham 
Study established the role of family history, gender, 
age, and smoking, as well as crude biomarkers such 
as blood pressure and lipid levels, as risk factors for 
cardiovascular disease. Today, we struggle to understand 
the pathogenetic progression from plaque to unstable 
plaque to plaque rupture to thrombosis, ischemia, and 
necrosis, as these events relate to endothelial activation, 
oxidative stress, hemostasis, and immune/inflammatory 
cascades. Given the complexity of the disease process, 
it is unsurprising that no single biomarker (e.g., C-reactive 
protein) has yielded more than incremental advantage 
over traditional measures of risk. The appreciation of 
the role of lipoprotein-associated phospholipase A2 in 
modulating plaque vulnerability represents further 
progress along this incremental spectrum of advances.22

In diabetes, further complexity is added by the common 
coincidence of metabolic syndrome. The components of  
metabolic syndrome, including insulin resistance, athero-
genic dyslipidemia, hypertension, and a proinflammatory 
and prothrombotic state all contribute to cardiovascular 
risk. The secretory activity of adipose tissue, including 
production of “adipokines,” such as leptin, tumor necrosis 
factor alpha, interleukin-6, and adiponectin, likely plays 
an important role in the pathogenesis of the metabolic 
syndrome. However, the syndrome remains a fairly 
crude phenomenological description of a phenotype, 
without a clear unified model of pathogenesis.

Publications abound wherein multiple biomarkers are 
combined to improve risk prediction incrementally. 

However, until better pathogenesis-based disease models 
are discovered, we will most likely be without adequate 
surrogate markers for cardiovascular outcomes in diabetes. 
How will such disease models be built, and how will 
next-generation surrogate markers be discovered? Prior to 
the sequencing of the human genome, disease models 
were built largely on insightful clinical observations 
that were interrogated in the laboratory, focusing on 
relatively small areas of biochemical and molecular 
focus. Metabolic diseases caused by enzyme deficiencies, 
such as Gaucher disease and homocystinuria, serve as  
good examples of this kind of disease modeling. We now 
have tools to explore the genome (DNA), transcriptome 
(mRNA), proteome (protein), and metabolome (metabolites) 
as they relate to clinical phenotypes. A “bottom-up,” or 
inductive, approach is analogous to a “fishing expedition,” 
wherein very large data sets are interrogated for correlation 
to a clinical phenotype. An example of this strategy is 
genome-wide association (GWA) studies that catalog 
single-nucleotide polymorphisms (SNPs) with disease 
states or outcomes. In this regard, GWA studies have 
expanded the number of genetic loci associated with 
T2DM risk to >10, including loci in and around CDKAL1, 
CDKN2A/B, IGF2BP2, TCF7L2, and HHEX.23,24 In many 
cases, the relationship between disease and gene is 
obscure, indicating either a false-positive association 
or a mechanism involved in the disease process that 
is unelucidated. Further insight can be gained by 
correlating GWA findings with gene expression or 
proteomic/metabolomic data. For example, Gieger and 
colleagues25 showed that a polymorphism in the FADS1 
gene is associated with a phenotype (coronary artery 
disease), as well as a “metabotype,” which, in this case, is 
a signature of serum glycerophospholipid concentrations. 
The metabolomic association makes sense in this case, 
because the FADS1 gene encodes fatty acid delta-5 
desaturase, an enzyme involved in the metabolism of 
long-chain polyunsaturated fatty acids. These metabolomic  
data can thus be very informative vis a vis putative 
genotypic and phenotypic associations.

On the other hand, a “top-down,” or deductive, approach 
builds on knowledge and observations around a biological 
process, extending current understanding. The deductive 
approach has yielded a plethora of cancer-associated 
biomarkers, based on progressive elucidation of the 
molecular basis of malignancy. This remarkable state 
of the art began in the early 1900s with the discovery 
by Peyton Rous that sarcoma in chickens could be 
transmitted by a cell-free filtrate (i.e., Rous sarcoma virus). 
The discovery of oncogenes in the 1970s magnified the 
importance of Rous’s earlier work and created a pathway 
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to understand the molecular basis of cancer. Since 1990, 
further work has revealed the enormously complex 
signaling pathways that are initiated by growth factors, 
vascular endothelial growth factor and epidermal growth 
factor (for example) interacting with receptor tyrosine 
kinases, vascular endothelial growth factor receptors 
and epidermal growth factor receptors, transmitted by 
protein kinase B, mitogen-activated protein kinase, and 
others, resulting in dysregulation of normal pathways of 
cell growth, differentiation, and division.

As information technology expands our ability to generate, 
store, and interrogate enormous amounts of data and 
information, inductive approaches to disease modeling 
and biomarker discovery are becoming more successful. 
Oncology again provides the best example of this. 
Commercially available tests such as Oncotype DX 
(Genomic Health) and Mammaprint (Agendia) correlate 
gene expression signatures with prognosis and/or 
likelihood of response to chemotherapy.26,27

Efforts to harness massive amounts of data to build 
better models of disease pathogenesis are underway in 
government, academia, and the private sector as well. 
Furthermore, companies such as Entelos, Pharsight, and 
Optimata are well established in this arena and focus 
specifically on drug development.

A network approach to disease modeling should elucidate 
new targets for drug discovery and new biomarkers 
in turn.28 For example, using gene expression array 
technology in various tissues, Keller and coworkers29 
demonstrated the importance of cell cycle regulatory 
genes in susceptibility to obesity-dependent diabetes 
in a mouse model. The findings suggest a molecular 
mechanism to explain the differential ability of islet cells  
to proliferate in response to obesity in strains of mice that 
are differentially susceptible to obesity-induced diabetes. 
These insights have been expanded to human studies in 
which SNPs were correlated with RNA expression array 
data from liver and adipose tissue. These data were 
then integrated into a pathway-based GWA analysis. 
Type 2 diabetes mellitus was shown to be associated 
with pathways already known to be associated with 
the disease, such as peroxisome proliferator-activated 
receptor signaling, calcium signaling, tumor growth 
factor beta signaling, cell communication, and pancreatic 
cancer pathway.30 However, additional less-characterized 
candidate pathways, including tight junction, adherens 
junction, complement and coagulation, and antigen 
processing and presentation were also implicated.30 
Some of these pathways have been linked to 

complications of diabetes as well as in the pathogenesis 
of type 1 diabetes but now serve as candidates for a 
pathogenic role in T2DM as well.

Finally, imaging data can be integrated into disease 
models along with molecular and biochemical data. 
Although few studies have yet achieved this level of data 
integration, the opportunity is clear. Noninvasive imaging 
techniques can demonstrate pancreatic beta-cell mass, 
skeletal muscle lipid levels, and arterial stiffness among 
other variables.31–33 Intermediate phenotypes that integrate 
data from sources as disparate as nucleic acid sequencing 
and magnetic resonance imaging will further advance 
our ability to more accurately assess cardiovascular risk  
in the context of diabetes.

Historically, biomarkers have been discovered by physio- 
logically based associations between some measurable 
biologic parameter and a disease state or phenotype.  
A number of counterintuitive biomarker changes in clinical 
trials demonstrate that disease models are often incomplete 
or flawed. Improved models of disease pathogenesis will 
naturally reveal new and improved biomarkers as well 
as targets for intervention. As molecular and genomic 
technology advance in step with exponential increases in 
information technology and analytics, such models are 
beginning to emerge.

In diabetes, clinical trials have called into question 
the relationship between the classical biomarker of 
glycemic control, HbA1c, and cardiovascular outcomes. 
Methodological advances from other fields, especially 
oncology, are beginning to pave the way toward improved 
models of diabetes pathogenesis and biomarker discovery. 
In this regard, a systems biology approach promises to 
delineate the complex genetic and physiologic interplay 
between diabetes, metabolic syndrome, and ischemic 
cardiovascular disease.
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