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Abstract

Background:
Hypoglycemia caused by intensive insulin therapy is a major challenge for artificial pancreas systems.  
Early detection and prevention of potential hypoglycemia are essential for the acceptance of fully automated 
artificial pancreas systems. Many of the proposed alarm systems are based on interpretation of recent values or 
trends in glucose values. In the present study, subject-specific linear models are introduced to capture glucose 
variations and predict future blood glucose concentrations. These models can be used in early alarm systems 
of potential hypoglycemia.

Method:
A recursive autoregressive partial least squares (RARPLS) algorithm is used to model the continuous glucose 
monitoring sensor data and predict future glucose concentrations for use in hypoglycemia alarm systems.  
The partial least squares models constructed are updated recursively at each sampling step with a moving 
window. An early hypoglycemia alarm algorithm using these models is proposed and evaluated.

Results:
Glucose prediction models based on real-time filtered data has a root mean squared error of 7.79 and a sum  
of squares of glucose prediction error of 7.35% for six-step-ahead (30 min) glucose predictions. The early alarm 
systems based on RARPLS shows good performance. A sensitivity of 86% and a false alarm rate of 0.42 false 
positive/day are obtained for the early alarm system based on six-step-ahead predicted glucose values with an 
average early detection time of 25.25 min.

Conclusions:
The RARPLS models developed provide satisfactory glucose prediction with relatively smaller error than 
other proposed algorithms and are good candidates to forecast and warn about potential hypoglycemia unless 
preventive action is taken far in advance.
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Introduction

Prevention of hypoglycemia is a major challenge for people with diabetes who use insulin treatment to manage 
their blood glucose. People with type 1 diabetes mellitus (T1DM) may have several episodes of hypoglycemia per 
week. Untreated hypoglycemia may lead to unconsciousness, seizures, and death. Availability of continuous glucose 
monitoring sensors (CGMSs) has been a big motivation for studies designed to monitor, predict, and control blood 
glucose in T1DM.

Early alarms are essential and should provide enough time to take the necessary action to prevent hypoglycemia. 
Pump suspension has been reported based on early detection.1–3 This article reports a novel approach for the 
prediction of future glucose values and early alarms to warn about impending hypoglycemia. Further evaluation of the  
algorithm for pump suspension or rescue carbohydrate is not studied in this paper. There are various hypoglycemia 
alarm algorithms in the literature based on different prediction methods and horizons.2–6 Many alarm systems are 
based on interpretation of recent trends in glucose values6,7 by tracking the slope of successive glucose values or 
extrapolating the current value. Reliable glucose prediction models are required to implement early alarms to reduce 
risk of hypoglycemia.

Optimal estimation using the Kalman filter to predict glucose levels and its rate of change was proposed,4 and 30 min 
prediction horizons (PHs) using the sensitivity and specificity were reported as 90% and 79%, respectively.8 Glucose 
prediction using artificial neural networks has also been studied.9 The performance of the models has been reported 
in terms of root mean square error (RMSE) and model delay for different PHs. The RMSE is around 10, 18, and  
27 mg/dl for 15, 30, and 45 min of PH, respectively. No results for detecting hypoglycemia and the alarm performance 
were reported. 

Glucose insulin dynamics show intersubject/intrasubject variability. Metabolic and glycemic changes due to meal 
consumption or physical activity may lead to further variation in glucose–insulin dynamics. These variations can be 
captured with subject-specific recursive models. The recursive autoregressive partial least squares (RARPLS) algorithm 
uses CGMS readings to predict future glucose concentrations. Partial least squares (PLS) is a widely used multivariate 
regression method for modeling and monitoring in chemometrics, supervision of chemical process operations and 
social sciences. It is extended by using autoregressive terms to capture dynamic variations in data. The recursive 
updates are used to eliminate the influence of old data from the model.

Methods

Partial Least Squares
Partial least squares is a multivariate regression method, especially convenient for large number of highly correlated 
data sets. The PLS models summarize the original data matrix (input variables X) to extract the most predictive 
information for the response variable (Y) and maximize the covariance between X and Y. It derives its usefulness 
from its ability to analyze data with many, noisy, collinear, and even incomplete variables in both X and Y.10  
The “outer relations” for X and Y blocks are, respectively,

X = TPT + E = S
a

i = 1
tipi

T + E                                                        (1)

Y = UQT + F = S
a

i = 1
uiqi

T + F                                                       (2)

where E and F represent the residual matrices, ti and ui are latent vectors, and pi and qi are the loadings vectors for X 
and Y blocks, respectively. The inner relation can be built between u and t for every component. The model for inner 
relation is

uh = bh
 th                                                                  (3)

where bh = uh’th / th’th is the regression coefficient.11
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Latent vectors can be calculated using nonlinear iterative PLS,12 Kernel,13 or simple PLS14 algorithm; no significant 
difference among these algorithms has been reported.

The appropriate number of latent variables that gives the best balance between the data fit and prediction is 
determined by various techniques such as cross validation.

Recursive Partial Least Squares
In order to adapt the changes in the system, it is necessary to avoid the influence of old data as new data become 
available. A recursive PLS algorithm with a moving window15 is used for this purpose with a few modifications.

When new data are available at sampling time k, the PLS regression is performed using the updated data matrices:

Xk+1
T  = [xk–w+1 ········ xk]                                                            (4)

Yk+1
T  = [yk–w+1 ········ yk]                                                            (5)

where w is the window size; the oldest data at sampling time k-w is excluded from the data matrices.

Partial least squares modeling works best when the data are fairly symmetrically distributed and have a fairly constant 
“error variance.”10 In a time-varying process, the mean levels of the variables may be changing with time.16 Therefore, 
for the recursive application presented in this article, current mean and variance is calculated for the current window, 
and data are mean centered and scaled with variance at every sampling step.

Recursive and Autoregressive Partial Least Squares
The use of previous values of glucose concentration for building an autoregressive model captures dynamic variations  
in data better.17 Recursive PLS regression is combined with autoregression to improve prediction results.

Y matrix consists of 1 to n steps ahead prediction (yk+n, yk+n-1, yk+n-2, … , yk+1), and X matrix includes the previous 
glucose measurement from CGMSs for the a previous sampling times:

X = [ykyk–1yk–2 ··· yk–a]                                                            (6)

where a is the order of autoregression for glucose. Different model parameters are computed for each PH.

Evaluation Criteria
Prediction error is expressed in terms of RMSE:

RMSE = S(y – ŷ)2

n                                                             (7)

where ŷ is the predicted glucose concentration (mg/dl) by the model and n is the data length. The sum of squares of 
glucose prediction error (SSGPE) is

SSGPE% = S(y – ŷ)2

Sy2    × 100                                                 (8)

Early Hypoglycemia Alarms
N-step-ahead predicted glucose concentration values from the RARPLS algorithm is used for early hypoglycemia 
alarm. In clinical trials, it is observed that accuracy of CGMS data becomes more important in lower glucose readings 
that lead to hypoglycemia. To be on the safe side and avoid immediate hypoglycemia, our alarm algorithm suggests 
validating CGMS data with finger stick or YSI measurements when the predicted glucose value crosses the safety 
threshold (90 mg/dl).
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The alarm algorithm first checks the current data, and if the glucose concentration is under the hypoglycemic threshold, 
an immediate hypoglycemia alarm is triggered. If a glucose value is higher than the threshold of 90, the algorithm checks 
for predictions of future glucose values to determine the need to trigger an early hypoglycemia alarm. When the  
n-step-predicted value crosses the hypoglycemia threshold (70 mg/dl), an early hypoglycemia alarm is raised. The flow 
chart of the alarm algorithm is illustrated in Figure 1.

Figure 1. Early and immediate hypoglycemia detection algorithm flow chart. BG, blood glucose.

Results

Subject Data
The prediction and alarm algorithm is tested retrospectively with data from 17 subjects, age varying between 18 and 
25 years (data collected at University of Illinois Chicago, College of Nursing, and Iowa State University). A Medtronic 
Guardian Real-Time Continuous Glucose Monitoring System is used for subcutaneous glucose data acquisition (5 min 
data interval). The data analyzed in this study are a reflection from the daily life of T1DM subjects; no insulin-induced 
hypoglycemia is included in the data. However, each data set included at least one or two episodes of hypoglycemia. 
One-week-long data were available to test the algorithm. For most subjects, interruptions occurred in data. The alarm 
prediction algorithm was used for sections of data that did not include any interruptions. Consequently, data lengths  
of half day to three days were used in testing the prediction algorithm. Another data set from the Diabetes Research  
in Children Network18 is also used to assess the alarm algorithm. In silico study is performed by using the University 
of Virginia/Padova metabolic simulator with 20 subjects (10 adults and 10 adolescents).

Preprocessing of the Data
Even though continuous glucose sensors have embedded analog filters, the output signal is still noisy and should be 
filtered in order to enhance their signal-to-noise ratio.19 Real-time filtering of CGMS values reduces the inaccuracy 
and noise in data but causes delay in prediction.20 An adaptive Kalman filtering algorithm is proposed by Facchinetti 
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and coauthors21 for real-time denoising. In this study, two filtering approaches were considered. First, a noncausal 
Savitzky–Golay smoothing filter is used to eliminate the noise.22 The second approach is a real-time adaptation of the 
Savitzky–Golay filter. In the real-time algorithm, a window consisting of (f - 1) previous data and the current data 
is used by fitting a first-order polynomial. This data window is updated with each new CGMS datum that becomes 
available. A window size of 9 (f = 9) and a first-order polynomial (n = 1) are selected to obtain good filtering by 
targeting small RMSE and small filtering delay in the prediction. Figure 2 shows the plot of raw CGMS data and 
filtered data after implementing the real-time algorithm, illustrating that filtering did not cause significant delay in 
glucose concentration information.

Figure 2. Raw CGMS data (blue line) is filtered to eliminate noise in 
the signal. SG, sensor glucose.

Table 1.
Autoregressive Order Selection Using Minimum Final Prediction Error Criteria

Autoregressive order (a) 1 2 3 4 5 6 7 8 9

FPE 13.38 8.16 8.18 8.06 8.13 8.18 8.19 8.16 8.21

Recursive Autoregressive Partial Least Squares
Dynamic (recursive) versus time-invariant models are 
analyzed for the same data set. For the time-invariant 
model, day-long CGMS data are used to construct the 
model, and the rest of the data of the same subject is 
used for model validation, whereas the dynamic model 
is updated at each sampling time with a moving window 
length of 1 day.

Akaike’s final prediction error (FPE) criteria are used 
for the selection of autoregressive model order (a).23  
The maximum model order is arbitrarily set to 9. Table 1 
displays the FPE values for each order. Minimum FPE is 
obtained while a = 4.

The effect of autoregressive order on glucose prediction 
with different PH is also analyzed using minimum RMSE (mg/dl) criteria. For PHs (PH = 1, 2 , …, 10), minimum 
RMSE is obtained when the order of autoregression is 4, which is consistent with the FPE criteria. 

Table 2 shows the RMSE and SSGPE values for both recursive and time-invariant autoregressive PLS algorithm using 
the noncausal smoothing filter and real-time filtering algorithm. The dynamic model is capable of capturing variations 
in a subject’s glucose concentration and minimizing the error better. Even though two consecutive data sets from the 
same subject are used for both constructing and validating the model, the static model yields higher errors for each PH.

Recursive autoregressive partial least squares provided the minimum RMSE and %SSGPE values for future glucose 
prediction. This model can be considered as a reliable glucose prediction model for early hypoglycemia detection, and  
it is used for the alarm algorithm in the rest of this article.

Hypoglycemia Detection and Alarms
A hypoglycemic event is defined as continuous sequence of data below the selected threshold instead of individual 
data points. If there are more than two steps between the groups of data that are below 70 mg/dl, they are considered 
two different hypoglycemia events. An alarm is also defined as a continuous event and considered true positive if 
it is issued up to 60 min before a hypoglycemic event, and the alarms raised during the event are not counted as  
early hypoglycemia alarm since our focus is in early detection (Table 3). False positive region is defined as the region 
where the alarm is triggered out of true positive region (long before or after a hypoglycemic event). An alarm is 
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Table 2.
Root Mean Square Error and Percentage Sum of Squares of Glucose Prediction Error Values for  
Time-Invariant Models and Dynamic Models with Moving Window Using Continuous Glucose Monitoring 
Sensor Data

PH
Time-invariant autoregressive PLS algorithm RARPLS algorithm

%SSGPE RMSE (mg/dl) %SSGPE RMSE (mg/dl)

Savitzky–Golay smoothing filter 

2 0.76 1.06 0.67 0.46 

4 2.33 3.2 2.07 1.95 

6 4.55 6.17 4.04 4.45 

8 7.27 9.81 6.43 7.67

10 10.32 13.92 9.16 11.29

Real-time first-order filter

2 3.83 3.47 1.66 1.78 

4 8.24 7.48 4.06 4.32 

6 12.14 11.03 7.35 7.79 

8 16.06 14.63 11.22 11.84

10 20.74 18.95 15.19 15.92

Table 3.
Event Definitions for Early Hypoglycemia Alarm Algorithm

True positive If alarm is raised and no true hypoglycemia is recorded in the following 60 min

False positive If alarm is raised and no true hypoglycemia is recorded in the following 50 min

False negative Early hypoglycemia alarm is not issued 60 min in advance of a true hypoglycemic event

Time to detection Time between the first alarm and the true hypoglycemic event

considered false negative if it is not raised up in true positive region (60 min advance of true hypoglycemic event). 
Time to detection is another important parameter in hypoglycemia alarms and is defined as the time between the first 
alarm raised within the true positive region and the beginning of the true hypoglycemic event.

We only considered early hypoglycemia alarms to evaluate our algorithm’s performance; alarms held during the 
event are not counted as true positive, as the continuous sensors are already equipped with immediate alarms for the 
current data point. Sensitivity, false positive ratio, and time to detection are reported to determine alarm performance. 
Sensitivity  is used as the measure of correctly identified positives, and  false positive ratio is defined to quantify false 
alarm rate per day:

Sensitivity = 
TruePositive

TruePositive + FalseNegative 
                                                (9)

False Alarm Ratio = 
Number of FalsePositive

Time(Data Length)
                                             (10)

Different PHs are analyzed to find better settings for early alarms. The hypoglycemia threshold was held constant 
at 70 mg/dl, and 4-, 6-, 8-, and 10-step-ahead prediction used the RARPLS algorithm. Although using 10-step-ahead 
prediction provides slightly better time to detection, it resulted in significantly lower sensitivity. As the PH decreases, 
better sensitivity, lower false alarm ratio, and relatively shorter time to detection are obtained. Sixty-nine hypoglycemia 
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Table 4.
Alarm Performance Evaluation for Different Prediction Horizons

PH (steps ahead) Sensitivity False alarm rate (false positives/day) Time to detection (min)

Savitzky–Golay smoothing filter 

10 0.59 0.56 34.71

8 0.68 0.48 32.73

6 0.90 0.36 28.25

4 0.91 0.31 20.76

Real-time first-order filter

10 0.56 0.61 32.34

8 0.67 0.52 31.08

6 0.86 0.42 25.25

4 0.89 0.35 18.83

events existed in the data analyzed. Performance results for different PHs with prefiltering and real-time filtering are 
illustrated in Table 4. Time to detection is calculated as an average time of all true positive alarms triggered.

Figure 3. Early hypoglycemia alarms are issued, on average, 25 min in advance of a hypoglycemia event. PLSR, partial least squares regression; 
BG, blood glucose.

There is a slight difference in sensitivity obtained with four- and six-step-ahead PHs as expected. The 25.25 min 
advanced hypoglycemia detection time can provide a sufficient period for preventive action. Therefore we selected the 
six-step-ahead PH optimal for our alarm algorithm. Figure 3 captures two days of a subject who is exposed to two 
hypoglycemic episodes, and an alarm was triggered 30 and 20 min in advance of the events, respectively.
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Discussion
We proposed a RARPLS algorithm to model and predict future glucose concentration of a subject with T1DM. We found 
modeling the variations in glucose concentration as a better approach than tracking only the recent changes in the 
glucose concentration. Glucose concentration is highly variable, and therefore, using time-invariant models would not 
provide satisfactory results, whereas our recursive algorithm that updated the model in every sampling step was 
capable of capturing the high variations.

The RARPLS models developed were then used in hypoglycemia warning alarms. One of the most important 
parameters for hypoglycemia alarms is the PH. We could predict up to 10-step-ahead future glucose concentration, and 
prediction results are satisfactory; maximum 11.29 and 15.92 RMSE are obtained for 10-step-ahead predictions with 
noncausal and online filters, respectively. However, because of this relatively higher error, the sensitivity was poor for 
longer PH. Six-step-ahead (30 min) PH increased the sensitivity significantly and provided enough time for patients or 
care providers to take preventive action. A real-time algorithm with the first-order filter provided satisfactory results. 
A sensitivity of 86% and a 0.42 false positive rate are obtained based on six-step-ahead prediction. The filter can be 
improved further by balancing accuracy and prediction delay.

Recursive autoregressive partial least squares is a strong candidate for developing reliable linear glucose prediction 
models and can be used in early hypoglycemia prediction and warning systems.

Funding:

This work was supported by National Institutes of Health Grant DK 085611-01.

References:

1.	 Agrawal P, Welsh JB, Kannard B, Askari S, Yang Q, Kaufman FR. Usage and effectiveness of the low glucose suspend feature of the medtronic 
paradigm veo insulin pump. J Diabetes Sci Technol. 2011;5(5):1137–41.

2.	 Buckingham B, Chase HP, Dassau E, Cobry E, Clinton P, Gage V, Caswell K, Wilkinson J, Cameron F, Lee H, Bequette BW, Doyle FJ 3rd. 
Prevention of nocturnal hypoglycemia using predictive alarm algorithms and insulin pump suspension. Diabetes Care. 2010;33(5):1013–7.

3.	 Buckingham B, Cobry E, Clinton P, Gage V, Caswell K, Kunselman E, Cameron F, Chase HP. Preventing hypoglycemia using predictive alarm 
algorithms and insulin pump suspension. Diabetes Technol Ther. 2009;11(2):93–7.

4.	 Palerm CC, Willis JP, Desemone J, Bequette BW. Hypoglycemia prediction and detection using optimal estimation. Diabetes Technol Ther. 
2005;7(1):3–14.

5.	 Eren-Oruklu M, Cinar A, Quinn L. Hypoglycemia prediction with subject-specific recursive time-series models. J Diabetes Sci Technol. 
2010;4(1):25–33.

6.	 Dassau E, Cameron F, Lee H, Bequette BW, Zisser H, Jovanovic L, Chase HP, Wilson DM, Buckingham BA, Doyle FJ 3rd. Real-time 
hypoglycemia prediction suite using continuous glucose monitoring: a safety net for the artificial pancreas. Diabetes Care. 2010;33(6):1249–54.

7.	 Cameron F, Niemeyer G, Gundy-Burlet K, Buckingham B. Statistical hypoglycemia prediction. J Diabetes Sci Technol. 2008;2(4):612–21.

8.	 Palerm CC, Bequette BW. Hypoglycemia detection and prediction using continuous glucose monitoring-a study on hypoglycemic clamp data.  
J Diabetes Sci Technol. 2007;1(5):624–9.

9.	 Pérez-Gandía C, Facchinetti A, Sparacino G, Cobelli C, Gómez EJ, Rigla M, de Leiva A, Hernando ME. Artificial neural network algorithm for 
online glucose prediction from continuous glucose monitoring. Diabetes Technol Ther. 2010;12(1):81–8.

10.	 Eriksson L, Johansson E, Kettaneh-Wold N, Wold S. Multi- and megavariate data analysis: principles and applications. Umeå: Umetrics; 2001. 

11.	 Geladi P, Kowalski BR. Partial least squares regression: a tutorial. Anal Chim Acta. 1986;185:1–17.

12.	 Wold H. Soft modeling: the basic design and some extensions. Systems under Indirect Observation. 1982;2: 589–91.

13.	 Lindgren F, Geladi P, Wold S. The kernel algorithm for PLS. J Chemometrics. 1993;7(1):45–59.

14.	 De Jong S. SIMPLS: An alternative approach to partial least squares regression. Chemom Intell Lab Syst. 1993;18(3): 251–63.

15.	 Qin SJ. Recursive PLS algorithms for adaptive data modeling. Comp Chem Eng. 1998;22(4-5): 503–14.

16.	 Dayal BS, MacGregor JF. Recursive exponentially weighted PLS and its applications to adaptive control and prediction. J Process Control. 
1997;7(3):169–79.



214

Hypoglycemia Early Alarm Systems Based on Recursive Autoregressive Partial Least Squares Models Bayrak

www.journalofdst.orgJ Diabetes Sci Technol Vol 7, Issue 1, January 2013

17.	 Eren-Oruklu M, Cinar A, Quinn L, Smith D. Estimation of future glucose concentrations with subject-specific recursive linear models. Diabetes 
Technol Ther. 2009;11(4):243–53.

18.	 The Diabetes Research in Children Network (DirecNet) Study Group. The effect of basal insulin during exercise on the development of 
hypoglycemia in children with type 1 diabetes. 2005. Available from: http://direcnet.jaeb.org/Studies.aspx?RecID=161.

19.	 Bequette BW. Continuous glucose monitoring: real-time algorithms for calibration, filtering, and alarms. J Diabetes Sci Technol.  
2010;4(2):404–18.

20.	 Sparacino G, Facchinetti A, Cobelli C. “Smart” continuous glucose monitoring sensors: on-line signal processing issues. Sensors (Basel). 
2010;10(7):6751–72.

21.	 Facchinetti A, Sparacino G, Cobelli C. An online self-tunable method to denoise CGM sensor data. IEEE Trans Biomed Eng. 2010;57(3):634–41.

22.	Savitzky A, Golay MJ. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 1964;36(8):1627–39.

23.	 Akaike H. Fitting autoregressive models for prediction. Annal Inst Stat Math. 1969;21(1):243–7.


