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Abstract

Background:
Insulin resistance (IR) can precede the dysglycemic states of prediabetes and type 2 diabetes mellitus (T2DM) 
by a number of years and is an early marker of risk for metabolic and cardiovascular disease. There is an 
unmet need for a simple method to measure IR that can be used for routine screening, prospective study, 
risk assessment, and therapeutic monitoring. We have reported several metabolites whose fasting plasma levels 
correlated with insulin sensitivity. These metabolites were used in the development of a novel test for IR and 
prediabetes.

Methods:
Data from the Relationship between Insulin Sensitivity and Cardiovascular Disease Study were used in an 
iterative process of algorithm development to define the best combination of metabolites for predicting the  
M value derived from the hyperinsulinemic euglycemic clamp, the gold standard measure of IR. Subjects were 
divided into a training set and a test set for algorithm development and validation. The resulting calculated  
M score, MQ, was utilized to predict IR and the risk of progressing from normal glucose tolerance to impaired 
glucose tolerance (IGT) over a 3 year period.

Results:
MQ correlated with actual M values, with an r value of 0.66. In addition, the test detects IR and predicts  
3 year IGT progression with areas under the curve of 0.79 and 0.70, respectively, outperforming other simple 
measures such as fasting insulin, fasting glucose, homeostatic model assessment of IR, or body mass index.

Conclusions:
The result, QuantoseTM, is a simple test for IR based on a single fasting blood sample and may have value as 
an early indicator of risk for the development of prediabetes and T2DM.
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Introduction

Insulin resistance (IR) is an early and important factor in the development of type 2 diabetes mellitus (T2DM) 
and may be present for years before the emergence of any changes in glycemic control.1–3 A practical measure of IR 
would be valuable for early identification of individuals at risk for T2DM and cardiovascular disease in the general  
population and as a tool for monitoring progress in intervention strategies to prevent or delay these diseases. The gold 
standard measure of insulin sensitivity is the hyperinsulinemic euglycemic clamp.4 The clamp has been used to 
demonstrate the range of insulin sensitivities within a population, and IR has generally been defined as the lower 
end of this distribution (e.g., bottom tertile).5 The clamp is an important research tool but is not practical for routine 
assessment of insulin sensitivity. A simple surrogate for insulin sensitivity in nondiabetics is the fasting insulin level, 
but this measure loses value in the context of β-cell decompensation as T2DM progresses and does not capture the 
level of insulinemia needed to dispose of a glucose load.6,7 Obesity is closely linked to IR, with body mass index 
(BMI) and waist circumference being good predictors of IR.8 

A number of models have been proposed and utilized as simplified measures of insulin sensitivity.9 Several steady-
state (fasting) models based only on insulin and glucose levels have been generated, including the homeostatic model 
assessment of insulin resistance (HOMA-IR),10,11 quantitative insulin sensitivity check index (QUICKI),12 and fasting 
insulin resistance index.13 Related models use fasting insulin plus various lipids measures, such as free fatty acids 
(revised QUICKI),14 triglycerides (McAuley index),15 or high-density lipoprotein/total cholesterol and free fatty acids.16 
These models are simple, requiring only a single blood sample, but it is not clear that they offer advantages over 
fasting insulin alone. Other models are based on the oral glucose tolerance test (OGTT) and use various combinations 
of glucose and insulin values from the fasting state and during the OGTT, including the Matsuda index,17 the Stumvoll 
index,18 and oral glucose insulin sensitivity (OGIS).19 More complex methods include the insulin tolerance test and the 
frequently sampled intravenous glucose tolerance test.20 These latter methods all require multiple blood samples, are 
complicated, and, like the clamp, are not practical for routine screening purposes. Therefore, there remains a need for 
a simple IR test for routine screening, prospective studies, risk assessment, and therapeutic monitoring.21,22

We reported a nontargeted metabolomics study using fasting plasma samples obtained from a healthy, nondiabetic 
population [Relationship between Insulin Sensitivity and Cardiovascular Disease (RISC) Study], searching for novel 
biomarkers of insulin sensitivity.23 A number of small molecule metabolites were identified that correlated with the 
M values derived from the hyperinsulinemic euglycemic clamp. This work details subsequent efforts to utilize these 
findings to create a model for predicting the clamp M value using only data derived from a single fasting blood sample. 
The development, testing, validation, and utility of the QuantoseTM IR diagnostic are reported herein. 

Methods

Clinical Study Design
The RISC Study subjects were utilized to generate and validate the diagnostic test. The methodology and objectives of 
this study and the 3 year follow-up data have been published.24,25 In brief, RISC is a prospective, observational, cohort 
study in clinically healthy people between the ages of 30 and 60 years recruited from 13 European countries. An OGTT 
was performed at the initial examination followed by a hyperinsulinemic euglycemic clamp within 1 week. A second 
OGTT was performed at a 3 year follow-up examination. Fasted blood samples were obtained at each examination.

Local ethics committee approval was obtained at each recruiting center. Subjects were given a written and an oral 
explanation of the study, and all provided informed consent.

Hyperinsulinemic Euglycemic Clamp 
Insulin was infused at a rate of 240 pmol/min-1/m-2 along with a simultaneous 20% dextrose infusion, whose 
rate was adjusted every 5–10 min to maintain plasma glucose within ±15% of the targeted range of 81–99 mg/dl.  
Insulin-mediated whole body glucose disposal was reported as the value Mwbm (mg/kg-1/min-1, whole body mass) 
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derived from the mean of the glucose infusion rate over the final 40 min of the 2 h clamp. The values for Mwbm 
ranged from 0.89 to 23.86 mg/kg-1/min-1. The RISC cohort was divided into tertiles based on Mwbm, and the members 
of the lowest tertile, T1, were defined as being insulin resistant (Table 1).

Table 1.
Relationship between Insulin Sensitivity and Cardiovascular Disease Study: Baseline Anthropometric and 
Metabolic Parameters by Mwbm Tertilea

T1 T2 T3

n 426 426 425

Mwbm cutoffs <5.703 >8.063

Mwbm 4.16 ± 1.08 6.90 ± 0.63 10.46 ± 2.32

Women (%) 49 58b 59b

Age (years) 44 ± 8 44 ± 8 43 ± 8c

Family history of diabetes (%) 36.5 25.3c 19.98d

BMI (kg/m2) 28.1 ± 4.3 25.1 ± 3.3d 23.3 ± 2.8d

Fasting glucose (mg/dl) 92 ± 10 91 ± 10 90 ± 9b

Fasting insulin (pmol/liter) 39 (28) 26 (15)d 20 (12)d

α-HB (µg/ml) 5.01 (2.37) 4.27 (2.00)d 3.68 (1.97)d

L-GPC (µg/ml) 12.95 (5.42) 15.10 (6.42)d 16.92 (6.54)d

Oleate (µg/ml) 91.8 (42.0) 82.4 (37.8)c 72.3 (42.6)d

a Entries are mean ± standard deviation or median (interquartile range). All p values are for two-sided t tests, and the usual c2 test for 
proportions for sex and family history were employed (without the continuity correction). All subjects had diastolic/systolic blood pressure 
<140/90 mmHg, FPG <126 mg/dl, 2 h plasma glucose <200 mg/dl, total cholesterol <300 mg/dl, triglycerides <400 mg/dl, and no 
electrocardiogram abnormalities as per RISC Study exclusion criteria.

b p < .05 versus T1.
c p < .001 versus T1.
d p < .00001 versus T1.

Analytical Procedures
Blood samples were divided into both plasma and serum fractions, aliquoted, and stored at -80 °C. Plasma glucose was 
measured using the glucose oxidase method. Serum insulin was measured using a dissociation enhanced lanthanide 
fluoroimmunoassay (AutoDELFIA insulin kit, Wallac, Turku, Finland).

Targeted Metabolite Analysis
Metabolites were analyzed by isotope dilution ultra-high performance liquid chromatographic tandem mass 
spectroscopy (UHPLC-MS-MS) for absolute quantitation. Fifty microliters of ethylenediaminetetraacetic acid plasma 
samples were spiked with internal standard solution and subsequently subjected to protein precipitation by mixing 
with 250 µl of methanol. Following centrifugation, an aliquot of the clear supernatant was injected onto an UHPLC-
MS-MS system consisting of a Thermo TSQ Quantum Ultra Mass Spectrometer and a Waters Acquity UHPLC system 
equipped with a column manager module and two different columns. α-Hydroxybutyric acid (α-HB) was eluted with 
a 0.01% formic acid in water/acetonitrile-methanol (1:1) gradient on a Waters Acquity BEH C18 column (100 × 2.1 mm2, 
1.7 µm) at a mobile phase flow rate of 0.4 ml/min at 40 °C. Ionization was achieved by negative heated electrospray 
ionization (HESI) mode. 1-linoleoylglycerophosphocholine (L-GPC) was eluted with a 0.01% formic acid in water/
acetonitrile-water-ammonium formate (700:300:2.7) gradient on a Thermo BioBasic SCX column (50 × 2.1 mm2, 5 µm) 
at a mobile phase flow rate of 0.5 ml/min at 40 °C. Ionization was achieved by positive HESI mode. Oleic acid was 
eluted isocratically with 15% 5 mM ammonium bicarbonate in water and 85% acetonitrile-methanol (1:1) on a Waters 
Acquity BEH C18 column (100 × 2.1 mm2, 1.7 µm) at a mobile phase flow rate of 0.4 ml/min at 40 °C. Ionization was 
achieved by negative HESI mode. Quantitation was performed based on area ratios of analyte and internal standard 
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peaks using a weighted linear least squares regression analysis generated from fortified calibration standards in an 
artificial matrix prepared immediately prior to each run. The following corresponding stable labeled compounds were 
used as internal standards: α-HB-D3, oleic acid-13C18, and L-GPC-D9.

Algorithm Development Background
In a previous study, fasting plasma samples from a representative subset of the RISC cohort (n = 399) underwent 
nontargeted metabolomic26,27 profiling using mass spectrometry.23 A number of metabolites were identified whose 
plasma levels correlated with IR as measured by Mffm

 (M normalized by fat-free mass; Mwbm gave similar correlations) 
obtained from the hyperinsulinemic euglycemic clamp. The highest correlating metabolite was α-HB. Other highly 
correlated metabolites included L-GPC, glycine, and creatine. A total of 26 metabolites from this study were collated 
and investigated for potential inclusion into an IR (M-predicting) algorithm along with BMI and insulin. These 26 
metabolites were chosen based on statistical and biological relevance and analytical characteristics.

A total of 1277 subjects from the RISC Study had complete baseline values for Mwbm, insulin, glucose, BMI, age, sex, 
and the 26 candidate metabolite biomarkers. This group was divided into a training set (n = 894) and a test set  
(n = 383) for algorithm generation and validation, respectively (Table 2). These two sets were evenly matched for sex, 
age, BMI, Mwbm, fasting glucose, and fasting insulin. 

Table 2.
Pearson Correlation of the Metabolites to Mwbm

a

Univariate correlations, entire data set

Variable Correlation 95% CI_L 95% CI_U p value

Insulin -0.531 -0.569 -0.490 7.95E-94

α-HB -0.368 -0.414 -0.319 3.29E-42

L-GPC 0.325 0.276 0.374 6.89E-33

Oleate -0.217 -0.269 -0.164 4.12E-15

BMI -0.517 -0.556 -0.476 2.66E-88

FPG -0.121 -0.174 -0.066 1.55E-05

Univariate correlations, training set

Variable Correlation 95% CI_L 95% CI_U p value

Insulin -0.545 -0.589 -0.497 3.32E-70

α-HB -0.404 -0.457 -0.347 2.32E-36

L-GPC 0.342 0.283 0.399 5.79E-26

Oleate -0.234 -0.295 -0.171 1.36E-12

BMI -0.515 -0.562 -0.465 9.00E-62

FPG -0.111 -0.175 -0.046 0.000908

Univariate correlations, test set

Variable Correlation 95% CI_L 95% CI_U p value

Insulin -0.500 -0.571 -0.420 1.45E-25

α-HB -0.282 -0.372 -0.187 1.99E-08

L-GPC 0.284 0.190 0.374 1.48E-08

Oleate -0.178 -0.273 -0.079 0.000473

BMI -0.522 -0.592 -0.445 3.42E-28

FPG -0.143 -0.240 -0.044 0.004941

CI, confidence interval.
a All correlations are log–log.
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Results
Algorithm Development Using the Training Set
A small set of variables were examined to see what transformations were best suited for use in the algorithm. 
Leverage plots suggested a natural log transformation of the input metabolite variables and a Box–Cox transformation 
suggested a log transformation of the response variable, Mwbm. Forward-selection models for predicting Mwbm were 
generated in R with the lars package.28 Many models were generated and cross validated in an iterative manner, and 
the optimal number of variables was determined to be four. The final model was developed and optimized using 
forward selection limited to four variables. The following variables were selected in this order: fasting insulin, α-HB, 
L-GPC, and stearate. Stearate was later found to have the undesirable analytical property of high background levels, 
and interestingly, the related fatty acid oleate was determined to be a suitable replacement. Individually, insulin, α-HB, 
and oleate are negatively correlated with Mwbm and L-GPC is positively correlated with it. The Quantose algorithm 
consists of a multiple linear regression (natural log transformed) on insulin, α-HB, L-GPC, and oleate used to calculate 
ln(M). At this point, the test’s calculated M (MQ) correlated with Mwbm with an r value of 0.68.

Test Performance: Estimating Mwbm with the Test Set
Without refitting the coefficients from the training set, the algorithm’s performance for estimating Mwbm was evaluated 
using the test set. Regression analysis on the results of these calculations showed an r value of 0.62. In contrast, fasting 
insulin, BMI, fasting glucose, HOMA-IR, and the OGTT-derived OGIS19,25 index were all significantly less correlated 
with Mwbm when compared with MQ (Table 3). These data validate the algorithm and the similar r values suggest that 
it is well fitted.

Table 3.
Pearson Correlations to the Actual ln(Mwbm) Values in the Test Seta

Variable Correlation 95% CI, lower limit 95% CI, upper limit p value versus MQ

ln(MQ) 0.615 0.548 0.673  —

-1*ln(HOMA-IR) 0.489 0.409 0.562 1.002E-6

-1*ln(fasting insulin) 0.500 0.420 0.571 4.449E-6

-1*ln(fasting glucose) 0.143 0.044 0.240 1.076E-19

-1*ln(BMI) 0.522 0.445 0.592 0.0072

ln(OGIS) 0.510 0.428 0.583 0.0049

CI, confidence interval.
a The correlation of test MQ predictions was evaluated with the correlation of the other four variables. The Hotelling–Williams test was 

performed for each of these using the “r.test” function from the “psych” package in R.28 One-sided tests were performed in order to 
evaluate if the correlation of calculated M is higher than the other correlation. The HOMA-IR was evaluated as fasting glucose × fasting 
insulin × constant. Oral glucose insulin sensitivity was calculated from data taken in the initial OGTT (n = 352).

Predicting Insulin Resistance in the Test Set
The areas under curve (AUCs) for detecting the bottom tertile of Mwbm (<5.703 mg/kg-1/min-1) were computed  
(Table 4) as an assessment of the test’s ability to predict IR. The algorithm’s derived AUC was 0.79. This is significantly 
better than the AUCs calculated for HOMA-IR, fasting insulin, fasting glucose, and the OGIS index, but not for BMI.

The Final Algorithm
At this point, the algorithm’s coefficients were refitted to the entire data set (n = 1277). MQ calculated from the final 
optimized algorithm correlated with Mwbm, with an r value of 0.66. The correlation plots for MQ (and HOMA-IR) versus 
Mwbm are shown in Figure 1. The MQ score is a simple IR test and was not adjusted for age, sex, family history of 
diabetes, BMI, or level of physical activity.
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Figure 1. Correlation Plots: Ln(MQ) left or Ln(HOMA-IR) right versus Ln(Mwbm). Ln(MQ): r = 0.66 versus Ln(Mwbm). Ln(HOMA-IR): r = 0.51 versus 
Ln(Mwbm). N = 1277, and HOMA-IR = (fasting plasma insulin in mU/l × FPG in mM)/22.5.

Predicting Normal Glucose Tolerance to Impaired Glucose Tolerance Progression
In order to determine the ability of the algorithm to identify individuals at risk for developing impaired glucose 
tolerance (IGT), normal glucose tolerance (NGT) subjects at baseline were evaluated at the three-year follow-up.  
This analysis included only study participants who had complete values for insulin, glucose, BMI, age, sex, and the 
three metabolite biomarkers at the 3 year follow-up (Table 5). Based on the follow-up 2 h glucose values, the 899 subjects 
were reclassified as “stable” normal glucose tolerant (n = 815) or “progressors” to IGT (n = 84). MQ values were used 
to predict progression from NGT to IGT. The AUCs for progression to IGT were computed using baseline variable values 
calculated from the baseline OGTT time point. The algorithm-derived MQ had an AUC of 0.697, which is significantly 
better than the AUCs derived from baseline fasting insulin, fasting glucose, HOMA-IR, or BMI, but not significantly 
different from the OGIS index (Table 6). MQ values calculated at the clamp time point and baseline Mwbm values gave 
similar and not significantly different AUCs of 0.704 and 0.707, respectively. MQ scores of <5.703, denoting IR, were 
found in 47% of the IGT progressors versus 18% having a BMI ≥30 or 25% having elevated fasting plasma glucose 

Table 4.
Areas under the Curve for Detecting the Bottom Tertile of Mwbm in the Test Set (Predicting Insulin 
Resistance)a

Variable AUC 95% CI, lower limit 95% CI, upper limit p value versus MQ

MQ 0.794 0.746 0.843 —

HOMA-IR 0.725 0.669 0.782 9.87E-05

Fasting insulin 0.736 0.680 0.791 0.0007

Fasting glucose 0.548 0.486 0.611 1.77E-14

BMI 0.754 0.702 0.806 0.0671

OGIS 0.731 0.672 0.790 0.012

CI, confidence interval.
a Areas under the curve for predicting IR, as defined by the bottom tertile of Mwbm values (<5.703) using the algorithm-derived MQ from  

the training set and the other four variables. The AUCs and confidence intervals were computed in R28 from the package “pROC.”29  
The DeLong method30 was used to construct the 95% confidence intervals. The significance test for comparing the predicted M to the 
other AUCs was implemented with “roc.test” from the pROC package using the DeLong method with the “paired” option given that  
these are ROC curves from the same subjects. One-sided tests were performed to test the hypothesis that the AUC is greater for test 
predicted M. Oral glucose insulin sensitivity was calculated from data taken in the initial OGTT (n = 352).
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Table 5.
Relationship between Insulin Sensitivity and Cardiovascular Disease Study: Baseline Anthropometric and 
Metabolic Parameters by Outcomea

Variable Stable NGT NGT to IGT p value

n 815 84

Women (%) 53 51 0.69

Age (years) 44 ± 8 46 ± 8 0.13

FHD (%) 25.5 28.9 0.50

BMI (kg/m2) 25.1 ± 3.7 26.3 ± 4.0 0.0062

2 h glucose (mg/dl) 96 ± 20 114 ± 16 1.38E-17

OGIS (µmol min-1 [kg fat-free mass]-1) 11.9 ± 2.6 10.1 ± 2.0 2.07E-9

Fasting glucose (mg/dl) 91 ± 10 95 ± 9 0.00077

Fasting insulin (pmol/liter) 29 (20) 37.5 (25.5) 1.66E-05

α-HB (µg/ml) 3.49 (1.72) 4.16 (1.82) 0.00043

L-GPC (µg/ml) 15.65 (7.60) 12.56 (4.76) 5.21E-07

Oleate (µg/ml) 73.8 (40.7) 83.7 (43.3) 0.0147

MQ 7.23 ± 2.06 5.91 ± 1.52 1.44E-09
a Entries are mean ± standard deviation or median (interquartile range). A 2 h, 75 g OGTT was performed after a 10–12 h overnight fast. 

Blood samples were obtained before and 30, 60, 90, and 120 min into the test. Two-sided t-tests were performed on the continuous 
variables and a c2 test (without continuity correction) was performed on the categorical variables. Stable NGT = subjects whose glucose 
tolerance was normal at baseline and follow-up (2 h glucose <140 mg/dl); NGT to IGT = subjects whose glucose tolerance was normal at 
baseline and impaired (2 h glucose ≥140 mg/dl) at follow-up; FHD = family history of diabetes; MQ = M (insulin-mediated glucose disposal 
rate) calculated using the test algorithm using data acquired at the time of the original OGTT; OGIS data = (n = 805 for stable NGT and  
n = 82 for NGT to IGT).

(FPG; ≥100 mg/dl) at baseline. Subjects with test scores <5.703 had a relative risk of 5.12 for progression to IGT when 
compared with subjects having a score >8.06, reflecting the most insulin-sensitive tertile of Mwbm (Table 7). At the  
3 year follow-up, MQ, α-HB, FPG, and 2 h glucose had all significantly worsened in the IGT progressors (Figure 2). 

Discussion

Predicting Insulin Resistance
The Quantose algorithm was developed within the context of an essentially healthy Caucasian population displaying a 
wide range of insulin sensitivities indexed as Mwbm. The traditional predictors of IR were evident in this population, 
with BMI, fasting insulin, and family history of diabetes all being significantly different in the lowest tertile of 
insulin sensitivity (T1) when compared with the other two tertiles (Table 1). The three metabolite biomarkers 
in the test displayed a similar pattern of significant differences for insulin-resistant T1 subjects versus the others. 
α-Hydroxybutyric acid and oleate levels are increased in the insulin-resistant subjects, and L-GPC is decreased in a 
manner consistent with their correlations with Mwbm (Table 2). Although the individual metabolites do not correlate 
as well as insulin alone with Mwbm, their inclusion into the algorithm significantly improves its correlation with Mwbm in 
comparison with insulin alone (Table 3). In addition, the test MQ score is significantly better for detecting IR, as defined 
by the T1 criterion, than insulin alone (AUC of 0.79 versus 0.74; Table 4). For these two measures, HOMA-IR has no 
advantage over insulin alone due to the nominal value of fasting glucose in these cases. Additionally, MQ correlates 
significantly better with Mwbm than BMI and performs equally well for identifying IR.

Predicting Progression to Impaired Glucose Tolerance 
The three metabolite biomarkers and insulin were all significantly different at baseline for NGT to IGT progressors 
when compared with the stable NGT subjects at the 3 year follow-up. The data suggest that the test score may be an 
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Table 7.
Relative Risk for Progression to Impaired Glucose 
Tolerance by MQ Valuea

MQ 
value Progressors/category Relative 

risk
95% CI 

Low High

<5.70 39/230 5.12 2.44 10.73

5.70–8.06 37/427 2.62 1.24 5.53

>8.06 8/242 1.00 — —

CI, confidence interval.
a MQ was calculated using data obtained at the initial OGTT time 

point and cutoff values come from the Mwbm tertiles cutoffs 
(Table 1), with scores below 5.70 being defined as insulin 
resistant; values above 8.06 reflect the highest tertile of insulin 
sensitivity. Data were calculated using JMP (version 8, SAS 
Institute Inc., Cary, NC).

Table 6.
Areas Under the Curve for Predicting Progression 
from Normal Glucose Tolerance to Impaired 
Glucose Tolerancea

Variable AUC 95% CI, 
lower limit

95% CI, 
upper limit

p value 
versus MQ

MQ 0.697 0.641 0.753 —

Fasting insulin 0.640 0.580 0.701 0.0022

Fasting glucose 0.605 0.543 0.667 0.0031

BMI 0.590 0.526 0.654 0.0009

HOMA-IR 0.648 0.587 0.709 0.007

OGIS 0.703 0.646 0.761 0.36

CI, confidence interval.
a MQ was calculated using data obtained at the initial OGTT time 

point. Areas under the curve were calculated as in Table 3 to 
compare stable NGT (n = 815) with NGT subjects at baseline 
that were IGT at the three-year follow-up (n = 84). One-sided 
t-tests were performed to test the hypothesis that the AUC is 
greater for MQ.  The baseline 2 h glucose has an AUC of 0.76. 
N = 887 for OGIS.

early indicator of risk for progression to IGT, as there 
were few clear signals of risk in the group at baseline. 
For example, the mean age and family history of diabetes 
for the IGT progressors were not significantly different 
from the NGT group, mean BMI was at the low end 
of overweight, and mean fasting glucose was in the 
normal range. In fact, the test identified subjects at risk 
who were lean and had normal fasting glucose values. 
MQ score decreased by 8% in the IGT progressors over 
the course of the 3 year period, which is indicative of 
worsening IR. In contrast, it decreased by only 2% in 
the stable NGT group. The test score may be useful for 
monitoring patient progression toward prediabetes or 
T2DM and, potentially, improvements in their glycemic 
status as well. 

Metabolite Biomarkers of Insulin Resistance
Metabolomic studies in metabolic diseases31 have been 
used to identify novel biomarkers that associate with 
IR23,32,33 and predict T2DM.34–36 The three metabolites used 
in the test have a number of potential roles in metabolic 
pathways relevant to insulin action, insulin secretion, 
or β-cell function. Insulin resistance is characterized by 
increased lipolysis, elevated plasma free fatty acids, and 
increased fatty acid oxidation.37 Oleic acid may serve 
as a surrogate for total fatty acids and their pathways; 
given that other fatty acids such as stearic acid and 
palmitic acid also correlate similarly with Mwbm lends 
credence to this concept. α-Hydroxybutyric acid is 
a shunt metabolite derived from α-ketobutyrate.23,38  

High dihydronicotinamide adenine dinucleotide/
nicotinamide adenine dinucleotide (NADH/NAD+) levels, 
which may occur with increased fatty acid oxidation 
in IR, may steer the metabolic fate of α-ketobutyrate 
from Krebs cycle oxidation toward conversion to α-HB. 
α-Ketobutyrate is a product of either threonine catabolism 
or of methionine metabolism via the cystathionine route, which concomitantly produces cysteine as a precursor for 
the antioxidant molecule glutathione. Increased flux through the latter route may be a marker of oxidative stress. 
α-Hydroxybutyric acid has been reported to be elevated 5.4-fold after 36 h of fasting and may serve as a general 
marker of a catabolic state.39 Interestingly, α-HB correlated with baseline 2 h glucose values (r = 0.28). L-GPC is a 
lysophosphocholine formed by the action of phospholipase A2 in the liver and by lecithin-cholesterolacyltransferase 
in the circulation. Phospholipase A2 activity is increased during inflammation, and related lysophosphocholines have 
been reported to inhibit phospholipase A2 and have anti-inflammatory activity.40 Related lysophosphocholines have 
been reported to activate GPR119, which has a role in glucagon-like peptide-1 and insulin secretion.41 Thus α-HB, 
L-GPC, and oleate may each add complementary and nonredundant information from diverse metabolic pathways 
related to insulin action. This may explain why each metabolite adds value to the test and improves the algorithm’s 
estimation of Mwbm.

Biomarkers correlating with IR may also have value in the prediction of prediabetes (impaired fasting glucose, IGT) 
and T2DM. Previous reports have already noted metabolites associated with future T2DM. These include branched-
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chain amino acids (valine, leucine, isoleucine), aromatic amino acids (tryptophan, phenylalanine), and uric acid.42–44 
A combination of three amino acids has been used to predict T2DM.43 In the Botnia study, α-HB was found to be a 
positive predictor and L-GPC a negative predictor of progression to T2DM.45

Body Mass Index and Insulin
In the development of the test, both insulin- and BMI-containing models were evaluated. Each gave qualitatively 
similar results, but the insulin algorithm was more accurate at predicting IR and identifying those at risk for IGT. 
Models containing both provided little additional value. The insulin-containing model was chosen with the goal of 
identifying at-risk, insulin-resistant individuals who may be lean or modestly overweight,46 where a BMI-based model 
might not perform well.2 Moreover, the insulin-containing model may predict changes in insulin sensitivity that 
are not accompanied by decreases in BMI as occurs in T2DM patients treated with thiazolidinediones. The inclusion 
of insulin in the test creates some challenges with respect to comparing samples that have measured insulin using 
different insulin assays, and this may require cross-calibration work to adjust insulin results from different studies.47–49  
Future work using the test will use a single insulin assay carried out in a consistent manner under validated conditions. 

Conclusions
Quantose is a test for IR based on a single fasting blood sample developed and validated within the RISC Study 
population. It has shown utility in the prediction of progression from NGT to IGT (one form of prediabetes) and 
is superior to other simple baseline measures (fasting insulin, BMI, fasting glucose, HOMA-IR) in this regard. 
Prediabetes is a high-risk state for T2DM, which is currently defined in terms of glycemic variables (FPG, hemoglobin 
A1c, 2 h glucose) that increase relatively late in disease progression. This test may have value as an earlier predictor of 
prediabetes or T2DM risk when compared with these traditional glycemic markers. Such information could be used for 
earlier implementation of lifestyle changes or drug therapy that have been shown to be successful in the prevention 
of T2DM.50 In the light of the ongoing global T2DM pandemic, such preventative actions are extremely important, and 
this test may have value in monitoring the progress of these interventions. Finally, clinical outcome data from diverse, 
longitudinal study populations are currently being analyzed to demonstrate the full clinical potential of this novel test  
for IR and prediabetes.

Figure 2. Three-year average individual fold change in baseline parameters: stable NGT versus NGT to IGT progressors. Stable NGT versus NGT 
to IGT; the single asterisk represents p < .05 and double asterisks represent p < .005 (two-sided t-tests). N = 74 NGT to IGT; n = 759 stable NGT 
(subjects with complete 3 year data).
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