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ORIGINAL ARTICLES

Abstract
This article sets forth guidelines for in silico (simulation-based) proof-of-concept testing of artificial pancreas 
control algorithms. The goal was to design a test procedure that can facilitate regulatory approval [e.g., Food  
and Drug Administration Investigational Device Exemption] for General Clinical Research Center experiments 
without preliminary testing on animals. The methodology is designed around a software package, based on a 
recent meal simulation model of the glucose–insulin system. Putting a premium on generality, this document 
starts by specifying a generic, rather abstract, meta-algorithm for control. The meta-algorithm has two main 
components: (1) patient assessment and tuning of control parameters, i.e., algorithmic processes for collection  
and processing patient data prior to closed-loop operation, and (2) controller warm-up and run-time operation, i.e., 
algorithmic processes for initializing controller states and managing blood glucose. The simulation-based  
testing methodology is designed to reveal the conceptual/mathematical operation of both main components, as 
applied to a large population of in silico patients with type 1 diabetes mellitus.

J Diabetes Sci Technol 2009;3(2):269-282

Introduction

In 2006 the Juvenile Diabetes Research Foundation  
(JDRF) created a consortium of research sites that now 
includes Boston University, Cambridge University (England),  
Sansum Diabetes Research Institute, Stanford University, 
University of Colorado, University of Virginia (UVA), 

and Yale University. The consortium is focused on the 
development of an artificial pancreas for the control of 
type 1 diabetes mellitus (T1DM) to be built from off-the-
shelf interstitial continuous glucose monitoring (CGM) 
devices and continuous subcutaneous insulin infusion 
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pumps with a feedback control law that computes 
appropriate insulin infusion doses at periodic intervals 
in response to glucose measurements. Consequently, the 
development of control algorithms for such an artificial 
pancreas has been a very active area of research since 
2007,1–6 adding to an already large body of literature 
on the automatic control of T1DM via intravenous 
blood glucose (BG) measurement and intravenous or 
intraperitoneal actuation (see Parker et al.,7 Bequette,8 and 
Renard9 and references contained therein). 

Class III medical devices that involve automated drug 
delivery are considered high risk by the Food and 
Drug Administration (FDA), and Investigational Device 
Exemption (IDE) requests must be approved for any 
clinical trial protocol that involves automated download 
of CGM data to a feedback control algorithm, use of 
a computational platform for computing appropriate 
insulin dosing, and/or automated upload of insulin 
actuation commands to an insulin pump. The traditional 
route to IDE approval involves proof-of-concept testing 
in animal trials, which are costly, time-consuming, and 
not compatible with the time horizon for research and 
development set forth by the JDRF. In an attempt to 
minimize the time to General Clinical Research Center 
(GCRC) clinical trials and utilize contemporary computing 
technology, the JDRF consortium has advanced the 
notion of replacing animal testing with simulated  
(in silico) tests of artificial pancreas control algorithms.  
In the fall of 2007, researchers from the University of Padua, 
Italy, and the University of Virginia developed a closed- 
loop simulation software package10 for in silico testing 
of closed-loop artificial pancreas algorithms and, in 
November 2007, proposed to the FDA the use of this 
package for proof-of-concept testing in place of animal 
trials. The FDA accepted this notion in January 2008, 
accepting the software for this specific purpose.11 

It should be noted that in silico studies have proven 
useful for the design and analysis of control algorithms 
in intensive care unit (ICU) blood glucose control.  
Lin and colleagues12 studied a virtual (in silico) cohort of 
200 subjects to analyze the performance of the SPRINT 
protocol for insulin and glucose infusion (Lonergan 
and associates13). The statistical outcome measures of 
the virtual trials compared very favorably with clinical 
data from actual clinical SPRINT studies conducted on  
165 critical care patients. Further, Chase and colleagues14 
provided clinical data sets for 20 critical care patients to 
enable groups without access to clinical data to develop 
models and design algorithms for glucose control in the 
ICU. Hovorka and associates15 proposed a methodology 

for validating models of critically ill patients for in silico 
testing of ICU glucose controllers. 

This article proposes a methodology for in silico testing 
of artificial pancreas algorithms, one that can take a 
mathematical description of a wide variety of control 
algorithms and reveal the performance characteristics 
of that algorithm as applied to a population of in silico 
patients with T1DM. More specifically, the methodology 
presented here is designed to show that proposed clinical 
artificial pancreas control algorithms, when implemented 
in a reliable fashion, perform well in a nominal setting 
and also in the face of uncertainties due to sensor noise, 
limited knowledge of patient state at initialization, imprecise 
knowledge about meals, and so on. The methodology 
proposed here is not designed to validate the hardware/
software implementation of an artificial pancreas control 
algorithm. While simulation could be useful in this 
regard in general, the software package of Kovatchev and 
co-workers10 is not equipped (and is not accepted) to 
simulate fault modes associated with the physical hardware 
and software implementation of control algorithms. 
Consequently, the proposed methodology does not test 
the response of the controller to software or system faults, 
such as communication problems, CGM or pump failure 
modes, or power-out/reboot scenarios that would require 
a real-time simulation that would include the clinical 
software and devices in what is referred to as hardware-
in-the-loop studies,16,17 which we leave as the subject of 
future work. In silico testing, as envisioned here, should  
be taken as just part of the overall strategy for securing 
FDA IDE approval, and a separate process of hardware 
and software “system validation” would inevitably be 
required, including validation of hardware and software 
features designed to accommodate human error and lack  
of compliance.

The Closed-Loop Simulation Software Package
The closed-loop simulation software package is based 
on (1) the oral glucose “meal” model of Dalla Man and 
colleagues18 and (2) modifications to the meal model4,19 to 
reflect glucose–insulin kinetics in T1DM. Details of the 
mathematical model, including component models for 
insulin transport from subcutaneous infusion to blood 
circulation and CGM sensor characteristics, can be found 
elsewhere.10 The simulation software comes with 300 in 
silico patients with T1DM (100 adults, 100 adolescents, 
and 100 children). As described in Kovatchev and 
colleagues,10 the decision of the FDA to accept the 
software for the purpose of proof-of-concept testing was 
based on comparisons with clinical data collected from 
a large number of human subjects with T1DM. The key 
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observation in this comparative study was that for each 
human subject with T1DM it was possible to identify at 
least one in silico subject in the same population group 
whose glucose–insulin response is comparable to that 
observed in vivo under comparable conditions. Thus, it 
is possible to conclude that an artificial pancreas control 
algorithm will be safe for human subject trials if the 
algorithm performs well at least for the subset of in silico 
subjects representative of the study population. In this 
vein, we point out that it is possible that among the 300 
in silico subjects some of them show glucose–insulin 
responses that have not been observed in vivo. Any 
such “outlying” subjects still serve a useful purpose in 
revealing the stability and performance characteristics  
of control algorithms, helping establish robustness and 
limits of performance.

The closed-loop simulation software is implemented 
in Simulink/MATLAB and provides a well-defined 
set of interfaces that allow for testing of artificial 
pancreas control algorithms in user-defined scenarios 
with prescribed meal profiles. CGM noise is reflected 
in the simulator, as modeled elsewhere.20 The software 
reports a wide variety of control-relevant plots and 
outcome measures, both per patient and for the various 
populations under study, including time within the 
target range of 70–180 mg/dl, the low blood glucose 
index (LBGI),21 and the recently developed method of 

“control variability grid analysis (CVGA).”22 For each 
in silico subject, there is an associated set of screening 
questionnaire parameters about the subject that can be 
used for customizing the controller, including age, weight, 
fasting BG, basal insulin rate, daily insulin requirement, 

“optimal” insulin bolus [units of insulin needed to cover  
1 gram carbohydrate (CHO) without dropping below 95% 
of fasting BG], and maximum drop in BG due to 1 unit 
insulin bolus.

For researchers affiliated with the JDRF Artificial Pancreas  
Consortium, the Jaeb Center for Health Research (JCHR) 
plays a key role acting as an objective third party 
applying this methodology to assess CGM-based control 
algorithms. Consequently, the software is designed to be  
user-friendly and allows JCHR technical staff to “plug in”  
(1) a MATLAB code (an .m file) that implements patient 
assessment and tuning procedures for component 1,  
(2) a Simulink model of the warm-up and run-time 
procedures for component 2, and (3) an ASCII “scenario”  
file that describes the sequence of meals to be taken 
during closed-loop control and also allows the user to 
specify the in silico patient’s blood glucose state at the 
onset of component 2. While knowledge of the meal 

profile of a clinical trial may be used in the design of 
a control algorithm, the software provides a “meal 
signal” that gives up to a 30-minute prior warning of 
an imminent meal. Since the software is not intended for 
medical decision making, it cannot be used directly 
in tuning feedback control algorithms for individual 
patients.

It is important to note that good in silico performance of a 
control algorithm does not necessarily translate into good 
in vivo performance. The claim of the computer simulation 
system is that it can out rule ineffective algorithms and 
test the stability and the robustness of control with 
challenges beyond the realm of physiology. However, 
simulation cannot guarantee in vivo performance. This 
is because the simulated “subjects” are still model 
based, which means that the complexity of a living 
organism is only approximated with a certain degree 
of accuracy provided by available data. In other words, 
while we were able to find a simulated “subject” that 
was reasonably close to each real person during testing 
of the simulated population against real glucose traces, 
we do not claim that all simulated subjects correspond  
to real people. With the accumulation of future data, the 
simulated population would be refined in terms of both 
excluding unrealistic subjects and expanding with new 
properties, such as hypoglycemia counterregulation and 
variable insulin sensitivity.

At the time of this writing, only the JCHR has access 
to the full version of the simulator, with all 300 in silico 
subjects, and the JCHR is equipped and authorized to 
run in silico preclinical trials on behalf of JDRF Artifical 
Pancreas consortium members. A limited version of 
the simulator, with 30 in silico subjects, is available to 
consortium members to allow for code development in 
preparation for preclinical trials.

Outline
The following section defines a generic artificial pancreas 
“meta-algorithm.” The next section, “Methods: In Silico 
Testing of Control Algorithms” proposes a methodology for 
in silico testing of artificial pancreas control algorithms. 

“Results 1: Proof-of-Concept Testing for the UVA/Pavia 
MPC Algorithm” presents illustrative results for the 
methodology applied to the model predictive control (MPC)  
algorithm, developed at the University of Pavia, currently 
being tested in separate clinical trials at the Universities 
of Virginia, Padova (Italy), and Montpellier (France).  

“Results 2: Proof-of-Concept Testing for an Autoregressive, 
External Input (ARX)-Based MPC Algorithm” briefly 
presents another case study of the methodology in action. 
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Finally, the article is summarized briefly and conclusions,  
as well as directions for future research, are discussed. 

Artificial Pancreas Control Algorithm: 
Meta-Algorithm
To simplify the specification of a general methodology for 
in silico proof of concept testing, it is convenient to first 
identify the core elements of an artificial pancreas control 
algorithm and their interactions in abstract, but suitably 
general, terms. In general, we use the term “control 
algorithm” to refer to the real-time feedback control law 
(“controller”) that replaces conventional treatment in the 
GCRC along with all of the computational processes that 
relate to controller tuning based on patient-specific data  
and controller warm-up based on CGM and other data 
prior to closed-loop operation.

In general, the feedback control law, which, for simplicity,  
is denoted by K(ψ), can be described as a dynamic system 
whose evolution in time may depend on a set of patient-
specific control parameters, ψ. The controller’s output, u(t),  
at time t is an insulin infusion rate, which, in practice, 
will be updated at regular intervals depending on time 
of day or patient state. Inputs to the controller may 
include the following.

1. y(t), the history of CGM samples received up to time t  
from the beginning of the closed-loop portion of the 
clinical trial

2. ν(t), the history of insulin and glucose interventions 
(meals and glucose tablets) up to time t (including 
conventional open-loop treatment prior to closed-loop 
operation) 

3. δ(t), “meal signal,” a signal from clinical staff that 
provides a 30-minute countdown to the next meal after 
time t, along with the size of the meal in grams CHO.

In most instances, the control law will be implemented 
as a sample data process; for example, CGM samples arrive  
and insulin pump rates are adjusted (or boluses are applied) 
at periodic intervals.

While the output of the controller at any time, u(t), must 
be unambiguous for a given set of inputs [y(t), ν(t), δ(t)], 
for implementation it may be convenient to describe 
operation of the controller in terms of its explicit 
dependence on a set of controller state variables, ξ(t).

The “meta-algorithm” described in the following 
subsections has two main components, as illustrated in 
Figure 1. The first component, described next, relates to 

all computational and algorithmic processes run prior 
to execution of the control law. The second component, 
described under “Component 2: Controller Warm-up and 
Run-Time Operation,” relates to controller warm-up and 
run-time operation. Decomposition into two components 
allows for researchers to define and test algorithms that 
are personalized for each subject involved in an artificial 
pancreas clinical study. Component 1 allows for the 
specification of a detailed preclinical assessment protocol 
that is designed to safely excite all relevant modes of the 
patient’s physiology. (In practice, the preclinical protocol 
may take place in an outpatient ambulatory setting.) 
Component 1 also allows for the specification of a “tuning” 
procedure, which  maps preclinical data about the patient 
into a set of patient-specific parameters for the run-time 
control algorithm.

Component 1: Patient Assessment and Tuning of 
Control Parameters
It is widely believed that, to achieve safe and effective 
closed-loop control of T1DM, the control algorithm 
for a given patient must be tuned to patient-specific 
characteristics affecting both the insulin responses 
computed by the algorithm and, for model-based control, 
the underlying glucose–insulin model of the patient. 
Consequently, many of the proposed artificial pancreas 
control algorithms involve a preliminary phase of data 
collection, perhaps during a separate “screening visit” 
for each patient enrolled in the trial. This phase of 
operation provides the opportunity to collect relevant 
biometric data (body weight, height, etc.) and to subject 
the patient to metabolic tests that allow for ex ante 
tuning of feedback control parameters and controller 
model development. Thinking of the algorithm itself 
as a “device,” we seek to avoid ad hoc, human-user 
tuning of control parameters. Moreover, we consider the 
algorithmic processes that transform screening data into 
a “tuned” set of controller parameters for a patient to 
be a key part of the “control algorithm.” Component 1 
of the meta-algorithm comprises the specific metabolic 
tests, data collection protocol, and any computational  
procedures for processing patient assessment data and 
tuning controller parameters, ψ. 

Assessment Protocol. Upon admission, essential biometric 
data are collected from the patient in a screening 
questionnaire. Data received from the questionnaire are 
denoted in the form of “screening data,” η, including 
both “objective” parameters about the patient that can 
be assessed perfectly upon admission to the GCRC (such 
as height and weight, if used by the control algorithm) 
and other parameters that are derived from long-term 
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observation of the patient under conventional treatment, 
such as average total daily insulin dose, if used by the 
control algorithm.

If the algorithmic procedure for tuning the feedback 
control algorithm requires more information about the 
patient, then the screening visit may also involve one or 
more metabolic tests (as would be specified in the clinical 
protocol). In this case, the patient would be admitted to 
the GCRC, instrumented with all specified measurement 
devices, and subjected to a metabolic stimulus, μ, that is 
designed to excite control-relevant modes of the patient’s 
glucose–insulin system. The stimulus could, for example, 
take the form of an oral glucose tolerance test. The 
patient’s response, ν, to the stimulus would be recorded 
over a specified period of time. The response comprises 
all blood glucose measurements (interstitial or intravenous) 
and any other clinically relevant transient responses to  
the stimulus (e.g., plasma insulin concentration, if used).  
For notational simplicity, we aggregate “metabolic test 
data” as ι = (μ, ν). Alternatively, metabolic test data, ι, can 
be collected during an outpatient phase of the protocol 

or through a combination of a screening visit and 
outpatient testing.

The assessment protocol may also involve the 
characterization of patient behaviors, including the 
patient’s daily schedule of meals. We use the notation β to 
denote all such behavioral assessment data. 

Tuning of Control Parameters. If required by the control 
methodology, patient assessment data are processed 
to allow for tuning of a patient-specific feedback 
controller. As an intermediate step, clinically significant 
characteristics of the patient may be calculated, including 
insulin sensitivity, clearance, or perhaps other specific 
parameters of a quantitative model of the patient’s 
metabolic system. Finally, the computational procedure 
for tuning the control law is denoted by the operator T 
so that ψ = T(η, μ, ν, β).

Remarks:

1.	 We assume that the structure of the feedback control law, 
K(ψ), is fixed and that the process of tuning controller 

Figure 1. Artificial pancreas meta-algorithm.
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parameters, ψ, based on η, μ, ν, and β is deterministic. 
In particular, the proposed meta-algorithm does not 
allow for “user-tunable” parameters. As an illustration, 
suppose that the feedback controller is a linear MPC 
based on an autoregressive model of glucose–insulin 
dynamics. In this case, the parameters of the model 
and the feedback gains must be uniquely determined 
from η, μ, ν, and β. The order of the autoregressive 
model (and controller) must either be fixed or be 
determined algorithmically from assessment data.

2.	The closed-loop simulation software of Kovatchev 
and colleagues11 is accepted by the FDA only for 
proof-of-concept testing. In particular, the software 
is not approved for use in designing/tuning control 
algorithms for specific human subjects.

Component 2: Controller Warm-up and Run-Time 
Operation
Component 2 of the meta-algorithm comprises the protocol  
for collecting and processing data for initialization of the 
feedback controller just prior to closing the feedback loop 
and run-time implementation of the feedback control law.

Run-Time Protocol. Upon admission for the closed-loop 
part of the clinical protocol, essential metabolic state 
data are collected from the patient as part of initializing 
the controller. First, the patient is instrumented with one 
or more glucose measurement devices and then open-
loop treatment is administered in accordance with the 
clinical protocol. In the time prior to activation of the 
controller, prerun patient data are collected: (1) prerun  
glucose readings {y(t)}0≤t≤Tw (i.e., open-loop CGM readings), 
where Tw is the length of time over which prerun data 
are collected, and (2) glucose and insulin interventions 
{v(t)}0≤t≤Tw including conventional open-loop treatment 
applied prior to the controller being turned on. Prerun  
data are collected in the interval [0,Tw] and closed-loop 
operation commences at time t = Tw .

Controller Initialization. Prerun data are used to initialize 
the internal states of the controller so that closed-loop 
operation may begin at time t = Tw. The algorithmic 
process by which controller states are initialized from 
these data is a critical part of the control algorithm overall.  
Controller initial states are computed as a function of prerun 
data: x(Tw) = I({y(t)}0≤t≤Tw , {v(t)}0≤t≤Tw ), where the operator I 
denotes the computational procedure for initializing the 
controller.

Run-Time Operation. Once the initial state of the controller  
is set, the control law, K(ψ), can be set into motion.

Methods: In Silico Testing of Control 
Algorithms
This section proposes a simulation-based methodology 
for proof-of-concept testing of control algorithms that 
conform to the meta-algorithm described earlier. The 
goal is to define a test procedure that uses closed-loop 
simulation software to generate in silico trial data to 
assert that GCRC human subject clinical trials may 
proceed without a preliminary phase of animal testing. 
The test procedure serves to provide evidence that a 
specific control algorithm will perform well within a 
specific clinical protocol. The procedure itself involves 
three software inputs: (1) a set of MATLAB “controller 
setup” m-files that implement the tuning procedure T 
of component 1 of the control algorithm, in which the 
software package can be used to simulate the metabolic 
tests (if any) needed to tune the control law for individual 
patients; (2) MATLAB/Simulink code that encapsulates 
an implementation of component 2, specifically start-
up procedure I and control law K(ψ); and (3) a set of 
scenarios to be run that collectively represent the battery  
of tests to be performed. 

This section, which is divided into four subsections, 
begins by identifying some key elements of the clinical 
protocol that should be specified for the test procedure 
to proceed. It then discusses sources of variability 
associated with the preparation of test subjects for GCRC 
clinical trials and proposes a corresponding set of “test 
instances” for each in silico subject involved in the study. 
Further, the third subsection, entitled “Generating Test 
Scenarios,” outlines the procedure by which test cases 
should be generated, based on primary sources of 
uncertainty and on attributes of the proposed clinical 
protocol. The resulting set of closed-loop experiments 
generates a sufficient number of in silico trials to evaluate 
the performance characteristics of control algorithms and 
reveals the sensitivity to both patient initial state and 
sensor noise. Finally, the subsection entitled “Outcome 
Measures” lists outcome measures from the in silico study 
that should be reported for establishing proof of concept.

Two Key Features of Clinical Protocols
The “meta-algorithm” described earlier referred to two 
aspects of GCRC clinical protocols for artificial pancreas 
control algorithms: (1) the “assessment protocol,” which 
describes clinical processes relating to patient-specific 
tuning of the control law, and (2) the “run-time protocol,” 
which describes clinical processes relating to open-
loop control of the patient prior to switching on the 
controller, CGM and blood glucose measurements taken 
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before and after controller initialization and during run- 
time operation, and meals. This subsection defines two 
features of the run-time protocol that should be specified  
as part of the in silico test procedure.

Meal Profile. Clinical studies relating to control algorithms 
for blood glucose regulation will typically specify that 
the patient will take one or more meals while subject 
to closed-loop control. The exact sequence of meals, 
including times at which they start and end, along with 
their carbohydrate content (grams CHO), is referred 
to as the “meal profile” of the study. From a control 
perspective, the meal profile serves as a disturbance that 
must be rejected by the control law implemented within  
the artificial pancreas algorithm.

Commutation versus Regulation Periods of Closed-Loop Control. 
Often the transient period after a controller is “switched 
on” is not representative of the long-term performance 
of the controller. Indeed, for the artificial pancreas, it 
will take some time for the controller to settle into a 
regular pattern of disturbance rejection, which could be 
a problem if the metrics used to assess the safety and 
performance of the algorithm are dominated by controller 
initial conditions (e.g., unusually low or high initial BG). 
We refer to the transient period after the controller is 
switched on as the “commutation period,” and we refer 
to the subsequent period of time, which is representative 
of the long-term performance of the systems, as the 

“regulation period.” In making use of this methodology, 
it is important to clearly specify commutation and 
regulation periods that are appropriate for their protocol 
and algorithm. The closed-loop simulation software 
is designed to assess outcome measures for any user-
specified regulation period.

Sources of Variability in GCRC Trials
Even though general clinical research centers provide 
a stable environment for the implementation of clinical 
trials, control algorithm performance can still be 
impacted by a number of factors that should be treated 
as sources of uncertainty. 

Variability in Patient Initial State in Component 2 (Warm-up 
and Run Time). Controller initialization is a key aspect of 
the artificial pancreas algorithm overall, as represented 
by start-up procedure I in component 2 of the meta-
algorithm. The patient’s metabolic state upon admission 
for the run-time phase of the protocol is perhaps the 
single most important source of variability in controller 
initialization. In practice, the patient’s metabolic state 
when prerun data collection commences cannot be 

stipulated or known in advance as part of the protocol 
and must be treated as variable. We define three “admit 
states” in Table 1. The nominal case, “admit state 1,” 
is defined by assuming that (1) the patient is initially 
steady at 100 mg/dl for any metabolic tests run during 
the screening visit and (2) the patient is initially steady 
at 100 mg/dl at the onset of collecting prerun data for 
controller initialization (just prior to switching on the 
controller). For “admit state 2” and “admit state 3,” we 
set the state variables and inputs of the model so that the 
patient is admitted in steady state at 80 and 180 mg/dl,  
respectively, at the onset of prerun data collection.

Sensor Noise in Collecting Prerun Data and in Run-Time 
Operation. CGM sensor noise is an important factor in 
both controller initialization and run-time operation. 
The CGM noise model implemented within the closed- 
loop simulation software package serves to emulate the 
impact of sensor noise in in silico testing of closed-loop 
algorithms. Recall that if closed-loop operation begins 
at simulation t = Tw , then open-loop prerun data collection 
begins at simulation time t = 0, where Tw is the duration  
of time over which prerun data are collected. (Simulation 
time for component 2 begins at t = 0.)

Meal Profile Variability. To test robustness to meal profile 
variability, we subject all in silico patients to meals that 
deviate from the prescribed meal profile in terms of 
both timing and meal size. Since meal profiles will 
vary significantly for different studies, it is impossible 
to specify exactly what variations should be introduced. 
However, in developing an in silico test plan, it is important 
to explore the impact of both meal size variability  
(e.g., light and heavy CHO amounts) and, for algorithms 
that attempt to take into account information about meal 
timing, meal time variability (e.g., early and late meals). 
We suggest five scenarios per meal: (1) nominal meal, 
(2) early meal/nominal size, (3) late meal/nominal size,  
(4) light meal/nominal time, and (5) heavy meal/nominal 

Table 1.
Patient Admit States for Controller Initialization

Admit state Description

1
Patient steady at 100 mg/dl upon admission 
for component 2 in collecting prerun data for 
controller initialization

2
Patient steady at 80 mg/dl upon admission 
for component 2 in collecting prerun data for 
controller initialization

3
Patient steady at 180 mg/dl upon admission 
for component 2 in collecting prerun data for 
controller initialization
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time, where “early,” “late,” “light,” and “heavy” should 
be defined appropriately with respect to the objectives of  
the clinical protocol, but meal amounts should constitute 
at least 25% deviation from the nominal protocol values 
(Table 2).

Protocols with Multiple Meals. Clearly, the number of 
scenarios will grow quite rapidly for protocols that 
involve more than one meal under closed-loop control. 
In such cases it will be necessary to identify the most 
relevant combinations of admit state and meal variation 
for robustness testing. These choices will, in general, be 
protocol specific.

Generating Test Scenarios
Based on the sources of variability listed under “Sources 
of Variability in GCRC Trials,” it is possible to generate 
a set of test scenarios that explore the impact of patient 
admit states, CGM noise, and meal profile variability for 
the population(s) being investigated, adults with T1DM, 
adolescents, and/or children. 

Illustration Protocol. The appropriate test scenarios for 
in silico proof-of-concept testing are specific to both the 
control algorithm and the proposed clinical protocol.  
As an illustration, consider the following clinical protocol, 
whose run-time phase is designed to test the ability of a 
controller to regulate blood glucose for a 24-hour period. 
Suppose that the protocol excludes both adolescents and 
children. Suppose further that the protocol stipulates the 
following:
1.	At approximately 18:00 Day 1, while undergoing 

conventional open-loop treatment, the subject takes a 
dinner meal containing 85 grams CHO, with insulin 
injections and CGM measurements fed into start-up 
procedure I of component 2 of the control algorithm 

2.	At approximately 21:00 Day 1, the basal rate function 
of the subject’s pump is set to zero 

3.	From the time that the basal rate function is set 
to zero (21:00 Day 1) until 21:00 Day 2, the subject 
receives a 1-minute bolus every 15 minutes according 
to calculations made by the control law, K(ψ) 

4.	At approximately 7:30 Day 2, the subject takes a 
breakfast meal containing 50 grams CHO 

5.	At approximately noon Day 2, the subject takes a lunch 
meal containing 65 grams CHO 

6.	At approximately 18:00 Day 2, the subject takes a 
dinner meal containing 85 grams CHO 

7.	At 21:00 Day 2, the control algorithm is turned off, and 
the subject’s normal basal pump rate is resumed. 

We suggest that an appropriate set of in silico test 
scenarios for this hypothetical protocol would be as 
shown in Table 3. Note that this test suite accounts  
for (1) variability in patient initial conditions at the 
beginning of closed-loop operation and (2) meal profile 
variability for the dinner meal of Day 2 (the largest meal 
experienced under closed-loop control).

In setting up the simulation, we would initialize 
simulation time t = 0 (minutes) to correspond to 18:00 Day 1  
so that closed-loop operation would begin at simulation 
time t = Tw = 180 (minutes), corresponding to 21:00 Day 1.  
In assessing outcome metrics, we would specify that 
the commutation period begins at 21:00 Day 1 (just after 
closed-loop operation begins) and end at 00:00 Day 2 
at which time we expect controller initialization transients 
to have decayed. The regulation period, where we are 
interested primarily in evaluating controller performance, 
would begin for this illustration protocol at 00:00 Day 2  
and end at completion of the closed-loop portion of the 
study at 21:00 Day 2.

Outcome Measures
Various metrics are generated from the simulation-based 
procedure described earlier. First, to facilitate regulatory 
approval, we recommend that nominal-case BG traces be 
presented for each in silico test subject. (For the illustration 
protocol given earlier, BG plots for test scenario 1 would 
be presented for all 100 adults.) In addition, CVGA plots 
should be presented for each test scenario, reflecting the  
aggregate performance of the control algorithm for the 
target population. (For the illustration protocol, we would 
present the CVGA plot for test scenario 1 illustrating 
the nominal performance of the control algorithm for 
all 100 adult CVGA plots separately for the remaining 
test scenarios: 2–15.) Finally, summary statistics should 
be reported for each in silico population group. Table 4 
suggests some relevant metrics based on Kovatchev and 

Table 2.
Meal Variability

Meal variant Description

1
Nominal meal (exactly as specified in the 
clinical protocol)

2
Early meal/nominal size [meal arrives earlier 
than expected but size of the meal (in grams 
CHO) is as specified in the protocol]

3 Late meal/nominal size

4 Light meal/nominal time

5 Heavy meal/nominal time
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associates.23 Report forms should be presented separately 
for the nominal case and for all of the deviation cases 
combined. [For the illustration protocol, for nominal case 
data, mean, standard deviation (SD), and median of each 
outcome measure for adults would be computed from 
all data collected in test scenario 1. For the deviation cases, 
mean, SD, and median of each outcome measure would 
be computed from all data collected in test scenarios 2–15.]  
When normative case data are available, it may be 
reasonable to compare summary statistics for each 
population group based on combined nominal and 
deviation case data.

Establishing Proof-of-Concept from in Silico Test Data 
While there are no specific thresholds to establish control 
proof of concept, it is necessary to argue on the basis 
of in silico test data generated earlier that an algorithm 
would perform comparably to conventional treatment. 
Roughly speaking, an algorithm will “pass” if the 
primary outcome measures (% time within target range of 
70–180 mg/dl and the LBGI) are within reasonable target  
limits relative to normative data. The recently published 
JDRF randomized clinical trial of CGM in children, 
adolescents, and adults provides normative CGM data 
on glucose control in well-motivated patients who were 
doing an average of more than six capillary blood glucose 
tests each day.24 These data are presented in Table 5 and 

Table 3.
Test Scenarios for Illustration Protocol

Test scenario Description

1
Admit state 1 (BG = 100 mg/dl at 18:00 Day 1), breakfast meal variant 1 (50 g CHO at 7:30 Day 2), lunch meal 
variant 1 (65 g CHO at noon Day 2), dinner meal variant 1 (85 g CHO at 18:00 Day 2)

2 Admit state 1, breakfast meal variant 1, lunch meal variant 1, dinner meal variant 2 (85 g CHO at 17:30 Day 2)

3 Admit state 1, breakfast meal variant 1, lunch meal variant 1, dinner meal variant 3 (85 g CHO at 18:30 Day 2)

4 Admit state 1, breakfast meal variant 1, lunch meal variant 1, dinner meal variant 4 (63.75 g CHO at 18:00 Day 2)

5 Admit state 1, breakfast meal variant 1, lunch meal variant 1, dinner meal variant 5 (106.25 g CHO at 18:00 Day 2)

6 Admit State 2 (BG = 80 mg/dl at 18:00 Day 1), breakfast meal variant 1, lunch meal variant 1, dinner meal variant 1

7 Admit state 2, breakfast meal variant 1, lunch meal variant 1, dinner meal variant 2

8 Admit state 2, breakfast meal variant 1, lunch meal variant 1, dinner meal variant 3

9 Admit state 2, breakfast meal variant 1, lunch meal variant 1, dinner meal variant 4

10 Admit state 2, breakfast meal variant 1, lunch meal variant 1, dinner meal variant 5

11 Admit State 3 (BG = 180 mg/dl at 18:00 Day 1), breakfast meal variant 1, lunch meal variant 1, dinner meal variant 1

12 Admit state 3, breakfast meal variant 1, lunch meal variant 1, dinner meal variant 2

13 Admit state 3, breakfast meal variant 1, lunch meal variant 1, dinner meal variant 3

14 Admit state 3, breakfast meal variant 1, lunch meal variant 1, dinner meal variant 4

15 Admit state 3, breakfast meal variant 1, lunch meal variant 1, dinner meal variant 5

Table 4.
Sample Outcome Measures Report Form (Primary 
Outcome Measures Shown in Bold)

Population group

(e.g., adults, adolescents, 
children)

Measure Mean SD Median

Mean BG      

Mean premeal BG      

Mean postmeal BG      

% time <50      

% time <70      

% time in [70-180]      

% time >180      

% time >300      

% time in [70–145](fasting)      

Postprandial area under 
curve/g CHO

     

LBGI      

High blood glucose index      

BG rate of increase      

SD of BG rate of change      
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could serve as one measure of contemporary normative 
data with conventional treatment based on glucose values 
derived from continuous glucose monitoring.

Results 1: Proof-of-Concept Testing for 
the UVA/Pavia MPC Algorithm
The methodology described previously was used to generate 
in silico test data for the linear MPC algorithm currently 
being tested in separate human subject clinical trials at 
the Universities of Virginia, Padova, and Montpellier. 
FDA IDE approval for the trial at the UVA was granted 
in April 2008. The MPC algorithm, developed at the 
University of Pavia, is based on analytical derivations6 
and involves only one tuning parameter, namely, q, the 
weight placed on quadratic state deviation away from the 
nominal operating point of the patient relative to insulin 
utilization. Only screening questionnaire data, η, are used 
to compute the appropriate q value for the patient via 
a simple nonlinear regression. Patient behavioral data, β,  
specifically meal size and meal timing data, are used by 
the controller to obtain an anticipatory insulin effect prior 
to the meal.

The clinical protocol is similar to the illustrative protocol 
discussed earlier in the section entitled, “Methods: In Silico 
Testing of Control Algorithms” but is only designed to 
test the ability of a controller to regulate blood glucose 
overnight and to compensate for breakfast in the morning.  
In particular, the protocol stipulates the following. 

1.	At approximately 18:00 Day 1, while undergoing 
conventional open-loop treatment, the subject takes a 
dinner meal containing 85 grams CHO, with insulin 
infusion rates and CGM measurements fed into start-up 
procedure I of component 2 of the control algorithm 

2.	At approximately 21:00 Day 1, the basal rate function 
of the subject’s pump is set to zero 

3.	From the time that the basal rate function is set 
to zero (21:00 Day 1) until 11:00 Day 2, the subject 
receives a 1-minute bolus every 15 minutes according 
to calculations made by the control law, K(ψ) 

4.	At approximately 7:30 Day 2, the subject takes a 
preplanned breakfast meal containing 50 grams CHO 

5.	At 11:00 Day 2, the control algorithm is turned off, and 
the subject’s normal basal pump rate is resumed.

The protocol excludes both adolescents and children.

Based on the outline of the protocol just given, it is 
possible to define a suite of 15 test scenarios that are 

analogous to test scenarios 1–15 for the illustrative 
protocol discussed under “Generating Test Scenarios.” 
Whereas test scenarios for the illustrative protocol 
focused on variability associated with the dinner meal 
of Day 2, test scenarios for the UVA protocol focused 
instead on variability associated with the breakfast meal 
of Day 2, i.e., the only meal that is meant to be covered 
under closed-loop control. A subset of in silico test results  
is presented. 

Testing the Nominal Scenario
Table 6 presents summary statistics from the testing of 
N = 100 simulated adults. 

Because of the tightly controlled conditions, including 
prior knowledge of a breakfast meal, the in silico 

Table 5.
Benchmark Performance for Conventional Treatment24

Mean Adults Adolescents Children

% time <50 2 3 1

% time <70 6 7 3

% time in 70–180 59 48 45

% time >180 35 45 52

% time >250 10 19 24

Mean mg/dl/min 0.73 0.85 0.84

Table 6.
Results from in Silico Testing: Nominal Scenario 
(Primary Outcome Measures Shown in Bold)

  Mean SD Median

Mean BG 121.87 9.73 121.45

Mean premeal BG 106.04 10.33 107.39

Mean postmeal BG 154.59 24.79 155.38

% time <50 0 0 0

% time <70 0.06 0.58 0

% time in [70–180] 97.3 5.55 100

% time >180 2.65 5.55 0

% time >300 0 0 0

Postprandial area under 
curve/g CHO

0.51 0.07 0.512

LBGI 0.32 0.52 0.12

High blood glucose index 1.08 0.77 1.03

BG rate of increase 1.4 0.94 1.21

SD of BG rate of change 0.53 0.21 0.52
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performance of the control algorithm suggests that the 
control algorithm is effective and safe for the nominal 
scenario. The primary effectiveness parameter, time 
within the target range of 70–180 mg/dl, exceeds 97%, 
which compares favorably to the benchmark figure in 
Table 5. The primary safety parameter, the low BG index 
indicating the exposure of subjects to hypoglycemia, is 
nearly zero. In addition, there are no readings above 
300 mg/dl and only 0.06% of the readings are below 
70 mg/dl. 

Figure 2 presents the CVGA plot from testing of the 
adult in silico population. Consistent with the numerical 
results of Table 4, 99% of all glucose excursions (in terms 
of their 95% confidence intervals) are in the accurate  
A zone or are in benign error B zones. None of the  
in silico patients land within the extreme error D or E 
zones. Not shown here are the glucose traces for all of 
the in silico patients. Review of the traces indicates strict 
overnight control, tight control of the breakfast meal, and 
no hypoglycemic episodes.

Testing against Meal Size Variability
In the nominal scenario the subject eats a 50-gram 
CHO breakfast meal at 7:30 Day 2, and the linear MPC 
algorithm makes use of this information as behavioral 
data, β, in producing an anticipatory insulin effect.  
To investigate the sensitivity of the control algorithm to 
the size of the meal, we tested meals with a carbohydrate 

content of 25% above and 25% below the expected meal  
amount for all 100 in silico adult subjects. Table 7 presents 
summary statistics from testing N = 100 in silico adult 
subjects, with the breakfast meal of Day 2 having 25%  
more and 25% fewer grams CHO than specified in the 
nominal scenario.

All results given earlier are computed for the duration 
of an in silico protocol emulating the conditions of the 
clinical trial. Even with variations in meal size, the  
in silico performance of the linear MPC algorithm is 
still quite good. For the case of 25% more CHO, the 
primary effectiveness parameter, the time within the 
target range of 70–180 mg/dl is greater than 94% and 
only 0.06% of the readings are below 70 mg/dl. For the 
case of 25% less CHO, the time within the target range 
of 70–180 mg/dl exceeds 99% and again only 0.06% of  
the readings are below 70 mg/dl. In both cases there are  
no readings above 300 mg/dl.

Proof-of-Concept Assessment of the Control 
Algorithm
From the statistics and the figures presented in the 
subsections “Testing the Nominal Scenario” and “Testing 
against Meal Size Variability,” along with in silico results 
for all of the remaining test scenarios (not shown), 
it appears that the linear MPC algorithm is stable 
overnight and performs well for the nominal scenario 
with prescribed meal timing and meal amounts. We 
point out that while the in silico results assure stability 
overnight, it is difficult to assess overnight controller 
performance, as the closed loop simulation software of 
Kovatchev and colleagues11 does not at this time take  
into account diurnal variation in insulin sensitivity. The 
results given in “Testing against Meal Size Variability,” 
along with the full suite of in silico results for the 
remaining test scenarios (not shown), suggest that the 
controller is robust to variations in meal size, meal 
timing, and patient initial conditions. Overall the linear 
MPC algorithm appears to be stable with respect to 
intersubject variation, even with just one patient-specific 
tuning parameter, q.

Results 2: Proof-of-Concept Testing for 
an Autoregressive, External Input (ARX)-
Based MPC Algorithm
This section briefly presents another case study of the 
methodology for the in silico testing of artificial pancreas 
algorithms. Specifically, we illustrate a proof of concept in 
which two variants of MPC (with and without an insulin 
on board dynamic constraint) are evaluated on a clinical Figure 2. Nominal-case CVGA of in silico adults.
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Figure 3. ARX-based MPC on subject 9 without and with the insulin on board (IOB) constraint. (Based on table entry from Ellingsen and 
colleagues.25) The 24-hour scenario starts at 7 a.m. at steady state followed by a protocol of three meals at 8 a.m., noon, and 6 p.m. with 20, 
40, and 70 grams of carbohydrates, respectively. Glucose trajectories without (A) and with (B) the IOB constraint are presented. Controller moves  
without (C) and with (D) the IOB constraint are shown. Dashed lines represent values of hyperglycemia and hypoglycemia. The controller that  
incorporated the IOB constraint shows more conservative behavior (D) than the controller that was missing the IOB constraint (C).
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Table 7.
Results from in Silico Testing: Breakfast Meal with 25% More and 25% Less CHO Than Expected Meal Size 
from Nominal Scenario (Primary Outcome Measures Shown in Bold)

 
 

25% More CHO (62.5 g) 25% Less CHO (37.5 g)

Mean SD Median Mean SD Median

Mean BG  124.77 10.57 124.46  118.93  8.94 118.61

Mean premeal BG  106.04 10.33 107.39 106.04  10.33 107.39

Mean postmeal BG  168.24 29.88 167.68 140.93  19.72 141.58

% time <50  0.00 0.00 0.00 0.00  0.00 0.00

% time <70  0.06 0.58 0.00  0.06 0.58 0.00

% time in [70–180]  94.34 7.96 100.00 99.29  2.52 100.00

% time >180  5.60 7.98 0.00  0.65 2.47 0.00

% time >300  0.00 0.00 0.00  0.00 0.00 0.00

Postprandial area under curve/g CHO  0.44 0.07 0.44  0.64 0.08 0.64

LBGI 0.31  0.52 0.12  0.32 0.53 0.12

High blood glucose index  1.49 1.01 1.40  0.73 0.55 0.64

BG rate of increase  1.80 1.15 1.58 1.06 0.77 0.81

SD of BG rate of change 0.63  0.25 0.62 0.43 0.17 0.41

protocol using the simulator environment (Figure 3). This 
controller was designed based on an ARX model that 
was identified on a 4-day scenario following a preclinical 

protocol consisting of three meals at 8 a.m., noon, and 
6 p.m. with 20, 40, and 70 grams of carbohydrates with 
matching boluses.25
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Discussion

We have proposed a methodology for in silico testing of 
artificial pancreas algorithms based on the closed-loop 
simulation software package described in Kovatchev 
and colleagues.11 The software is designed to take a  
mathematical description of control algorithms that conform 
to the constraints of the “meta-algorithm” discussed under 

“Artificial Pancreas Control Algorithm: Meta-Algorithm” 
and reveal the performance characteristic of that 
algorithm as applied to a population of in silico patients 
with T1DM. The test procedure described serves to 
establish the “proof-of-concept” for control algorithms, a  
key step toward FDA IDE approval, without requiring 
animal trials. As discussed in under “Results 1: Proof-
of-Concept Testing for the UVA/Pavia MPC Algorithm,” 
researchers at the University of Virginia used this 
methodology to validate an MPC algorithm for an 
overnight closed-loop protocol, and FDA IDE approval 
was granted within 4 months after FDA acceptance of 
the closed-loop simulation software. With clinical trials 
underway, we will have the opportunity to further 
validate and refine the in silico population based on 
controller performance in vivo.

It is worth noting that while the software is equipped 
with a model for CGM noise, it is not equipped to simulate  
fault modes associated with the physical hardware 
and software implementation of control algorithms, and 
thus the methodology proposed here is not designed 
to validate the hardware/software implementation of 
an artificial pancreas control algorithm. Safety in the 
face of human errors and lack of compliance has to be 
assured through a complete systems engineering process: 
hazard analysis, requirements, specifications, and testing. 
The methodology of this article addresses just a part 
of the testing procedure, specifically the performance 
of the system in the presence of systematic uncertainty 
(CGM noise, initial states, etc.) given that all hardware, 
software, and human interactions are reliable. Future 
research efforts may seek to develop enhanced simulation 
capabilities that include new features, such as the ability 
to represent other important factors, such as exercise, 
infection, and diurnal variation in insulin sensitivity, 
all of which could affect the performance and safety of  
an algorithm in vivo. New simulation tools would have 
many uses beyond proof-of-concept testing, including 
hardware/software system validation (as suggested in 
Dassau and associates17) and training.
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