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Abstract

Background:
Noninvasive glucose measurements are possible by analysis of transmitted near-infrared light over the 4000- to  
5000-cm-1 spectral range. Such measurements are highly sensitive to the exact position of the fiber-optic interface 
on the surface of the skin sample. A critical question is the degree of heterogeneity of the major chemical 
components of the skin matrix in relation to the size of the fiber-optic probed used to collect noninvasive spectra. 
Microscopic spectral mapping is used to map the chemical distribution for a set of excised sections of rat 
skin.

Method:
A Fourier transform near-infrared microspectrometer was used to collect transmission spectra from 16 tissue  
samples harvested from a set of four healthy Harlan–Sprague male rats. A reference point in the center of 
the tissue sample was probed regularly to track dehydration, changes in tissue composition, and changes 
in instrument performance. Amounts of the major skin constituents were determined by fitting microspectra to a  
set of six pure component absorbance spectra corresponding to water, type I collagen protein, keratin protein,  
fat, an offset term, and a slope term.

Results:
Microspectroscopy provides spectra with root mean square noise levels on 100% lines between 418 and 1475 
microabsorbance units, which is sufficient for measuring the main chemical components of skin. The estimated 
spatial resolution of the microscope is 220 µm. The amounts of each tissue matrix component were determined  
for each 480 × 360-µm2 location of a 4.8 × 3.6-mm2 rectangular block of skin tissue. These spectra were used to 
generate two-dimensional distribution maps for each of the principal skin components.

continued 
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Introduction

Several approaches are being actively pursued to 
develop technology for measuring glucose noninvasively 
in human subjects.1 Spectroscopic approaches involve  
passing a selected band of optical radiation through 
a vascular region of the body and then extracting the 
corresponding glucose concentration from the resulting  
spectrum. Examples of contemporary spectroscopic 
approaches include near-infrared absorption spectroscopy,2 

Raman scattering spectroscopy,3 and photoacoustic infrared 
spectroscopy.4 In all cases, the principal challenge is to 
extract glucose-specific quantitative information from 
noninvasive spectra that are dominated by much larger 
sources of spectral variance.5

A major source of spectral variance is the tissue sample 
itself. The heterogeneity of the chemical composition of 
the tissue matrix is responsible for the scattering and 
absorption of propagating photons.6 As a result, the 
chemical composition of the tissue matrix and the physical  
distribution of the principal chemical constituents have 
a major impact on the spectrum collected during a 
noninvasive experiment. The relative amount of each 
chemical constituent within the path of propagating 
photons and the heterogeneous distribution of these 
chemicals heavily impact the absorption and scattering 
of photons that compose each noninvasive spectrum. 
Furthermore, the spectroscopic and scattering properties  
of living tissue are strongly affected by temperature and 
pressure, thereby producing additional sources of tissue-
related spectral variance.7

An example is the measurement of glucose by near-infrared 
absorption spectroscopy where light is transmitted across 
a fold of rat skin. In this experiment, an optical fiber 

delivers the incident light to one side of the skin fold 
and a second optical fiber collects the transmitted light 
for detection.8 As noted previously,8 accurate predictions  
of glucose concentration are possible when noninvasive 
spectra are collected repeatedly and the fiber-optic 
interface remains stationary during the collection of 
noninvasive spectra. When the fiber-optic interface is 
removed and repositioned before each spectrum, the 
predicted glucose concentrations are highly scattered.8

We are interested in understanding how the heterogeneity 
of the chemical composition of skin impacts the spectral 
variance of noninvasive near-infrared transmission spectra. 
Such a study requires the ability to map the distribution  
of chemical components within the skin matrix in order to 
ascertain differences in this distribution and to determine 
the impact of this distribution on spectral variance. This 
report describes a mapping procedure used to establish 
the chemical distribution of the principal chemical 
components of skin samples. Tissue maps are generated 
using microspectroscopy to collect near-infrared spectra 
for 480 × 360-µm2 sections of excised skin samples. An 
analysis of the resulting chemical distribution maps 
reveals information pertaining to the spectral variance 
within and between selected measurement sites.

Methods

Instrumentation
Tissue maps were prepared using a Nicolet Magna 
560 Fourier transform infrared spectrometer (Nicolet 
Instrument Corp., Madison, WI) coupled with an IR-Plan® 

Advantage microscope (SpectraTech, Inc., Shelton, CT).  

Abstract cont.

Conclusions:
Distribution of the chemical components of rat skin is significant relative to the dimensions of noninvasive 
glucose sensing. Chemical distribution maps reveal that variations in the chemical composition of the skin 
samples are on the same length scale as the fiber-optic probe used to collect noninvasive near-infrared spectra. 
Analysis of variance between tissue slices collected for one animal and analysis of variations between animals 
indicate that animal-to-animal variation for all four chemical components is significantly higher than variations  
between samples for a given animal. These findings justify the collection and interpretation of near-infrared 
microspectroscopic maps of human skin to establish chemical heterogeneity and its impact on noninvasive  
glucose sensing for the management of diabetes.
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avoid displacing the tissue components within the tissue 
matrix. Each sample was left at room temperature inside 
the compression cell for at least 15 minutes to stabilize 
the temperature of the tissue. During the course of these 
measurements, the room temperature ranged from 21.2 
to 23.0°C and more exact temperature control was not 
attempted.

Absorbance Spectra
Absorbance spectra were calculated as the negative 
logarithm of the ratio of the tissue single beam spectrum 
relative to an air reference single beam spectrum. Air 
reference spectra were obtained by replacing the tissue 
slice in the compression cell with a 0.95-mm-thick spacer 
ring composed of Teflon. Air reference spectra were 
collected at room temperature prior to the mapping of 
each tissue slice. The same air reference spectrum was 
used for each absorbance spectrum in the tissue map.

All spectral data were collected in triplicate as 128 co-added, 
8k interferograms. Prior to applying Fourier transformation, 
interferograms were treated with a triangular apodization 
and Mertz phase correction. After Fourier transformation,  
the resulting single beam spectra covered the spectral 
range from 4000 to 5000 cm-1 with a nominal point spacing  
of 3.8 cm-1 and a resolution of 7.6 cm-1. No external aperture 
was used to maximize the instrumental signal-to-noise  
ratio for each spectrum. Spatial resolution of the system  
was determined experimentally to be about 220 µm.

After collecting reference air spectra, the cell was loaded  
with the tissue slice and mapping was performed by 
starting at the northwest corner of the tissue slice. An 

This microscope was equipped with Cassegrain optics 
(0.58 numerical aperture, 160/0) and provided a 15-fold 
magnification of the tissue section. The microscope had 
been modified by installing a liquid nitrogen-cooled InSb 
detector equipped with a K-band interference filter. This 
filter was used to block all light other than the region 
between 4000 and 5000 cm-1 (2.0–2.5 µm).

A compression cell was used to hold the tissue samples 
on the stage of the microscope. A schematic diagram 
of this compression cell is provided in Figure 1. This 
custom-made cell consisted of a 1-inch-diameter cylinder 
that held a sapphire window at one end. The tissue slice 
was placed on top of this window after which a second 
sapphire window was placed on top of the tissue slice. 
A metal ring-screw was used to hold the sandwiched 
tissue slice in place. The thickness of the sample could 
be varied by screwing the ring-screw tighter and 
compressing the tissue between the sapphire windows. 
Pressure between the windows was relieved by a pair 
of small holes positioned on the outer circumference of 
the cylinder, as illustrated in Figure 1. While spectra  
were collected, these holes were covered with Parafilm to 
slow the rate of tissue dehydration. After assembly, the 
compression cell was placed on a motorized XY mapping 
stage (SpectraTech, Inc.).

Tissue Samples
Experiments were performed on a group of rat skin 
samples taken from a section of skin on the back of the 
animal’s neck. These skin samples were excised from 
euthanized retired breeder Harlan–Sprague male rats 
weighing between 400 and 500 grams. Immediately 
following euthanasia, skin between the shoulders was 
shaved with an electric razor and 6 × 6-mm2 pieces 
of skin tissue were excised. Precaution was taken to 
minimize the amount of blood in these samples. Four 
skin samples were taken from each animal. Each 
sample was immediately snap-frozen in liquid nitrogen, 
submerged in chilled phosphate buffer saline, and stored 
frozen. This procedure was performed according to a 
protocol approved by the University of Iowa Animal 
Care and Use Committee.

Just before each measurement, a tissue sample was  
thawed at room temperature, patted dry, and positioned 
inside the compression cell, as described earlier. Sample 
thickness was adjusted by compressing the tissue between 
the two sapphire windows until a reasonable infrared 
signal was obtained from the microscope. Generally, sample 
thickness ranged from 0.5 to 1 mm by this procedure. 
Care was taken not to squeeze the sample too hard to 

Figure 1. Schematic diagram of the mapping experiment showing  
(A) the compression cell, (B) tissue slice with measurement array, 
and (C) charge-coupled device camera images of two measurement 
locations (bar size: 100 µm). Red dot on the tissue slice array denotes 
reference location.
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array of tissue spectra was collected by moving the stage 
in X and Y directions in fixed increments of 480 and  
360 µm, respectively, as indicated schematically in 
Figure 1. In all, spectra were collected for a 10 × 10 array 
of locations on the tissue slice. This corresponds to 100 
locations across an area of 4.8 × 3.6 mm2. Approximately  
2 minutes were required to set the stage position and to 
collect a single spectrum at each map point. After every  
30 minutes, the stage was moved to align the center point 
of the tissue slice at the focal point, and microscopic 
spectra were recorded for reference purposes.

OMNIC® Atlµs™ software (Version 1.1, Nicolet Instrument 
Corp.) was used for data collection. All spectral processing 
and map construction were accomplished with MATLAB® 
(Version 7.0, The MathWorks, Inc., Natick, MA).

Spectral Quality
Spectral quality was assessed as root mean square (RMS) 
noise on 100% lines between 4400 and 4600 cm-1. A 100% 
line was obtained by calculating the negative logarithm 
of the ratio between two back-to-back single beam spectra 
collected from an identical location. The resulting 100%  
line was then fitted to a second-order polynomial, and 
the RMS error of this fit was obtained using Equation (1): 

                  (1)

where n is the number of wavelengths in the fitted region, 
xi is the measured absorbance value, and x̂ i is the fitted 
absorbance value.

The 100% lines and the corresponding RMS noise values 
were determined for triplicate air single beam spectra 
and triplicate single beam spectra collected at the center 
reference point of the tissue slice. For each case, the 
average value (± standard deviation) is reported for the 
three possible combinations of these single beam spectra 
(e.g., ratios of first to second, second to third, and third 
to first).

Spectral Fitting
Quantitative information can be extracted from each 
spectrum by fitting it to a set of standard spectra that 
represent the main chemical components of the skin 
matrix. In this work, each skin spectrum was fitted to 
a set of standard spectra representing water, collagen 
protein, keratin protein, and fat. Additional terms were 
included in the regression analysis to account for a 
constant offset and a sloping baseline.

Standard spectra were collected in a conventional 
transmission geometry at room temperature. The water 
spectrum (Awater) was obtained from a sealed 1-mm thick  
transmission cell. Collagen spectrum (Acollagen) was 
collected from a 1-mm thick pressed pellet composed of 
type I collagen protein dispersed in a matrix of potassium 
bromide. Keratin spectrum (Akeratin) was obtained by 
transmitting near-infrared radiation through a 0.4-mm thick 
sample of human fingernail. Human fingernail is reported 
to be composed primarily of keratin protein but may also 
contain smaller amounts of water and lipids.9 Moreover, 
keratin in nail (known as hard keratin) varies in its cystine 
content compared to soft keratin in skin.10 Fat spectrum 
(Afat) was collected from a 1-mm thick sample of bovine  
fat as described elsewhere.11

Spectra corresponding to each of the 100 positions along  
the tissue slice were fitted by a least-squares regression 
to the following equation:

Askin = (βwater × Awater) + (βcollagen × Acollagen) +
(βfat × Afat) + (βkeratin × Akeratin) +                     (2)
(βoffset × Aoffset) + (βslope × Aslope) + ε

where Askin is the measured skin spectrum, Aslope 
and Aoffset correspond to the slope and offset terms, 
respectively, βwater, βcollagen, βkeratin, βfat, βoffset, and 
βslope represent regression coefficients from fitting the 
corresponding standard absorbance spectrum, and ε 
is the residual spectrum. The resulting six regression 
coefficients represent the relative amount of each 
component (water, collagen, keratin, fat, slope, and offset) 
for each location on the skin slice.

Each spectrum was fitted by least-squares regression over 
the 4200- to 4900-cm-1 spectral range.

One-Way Analysis of Variance (ANOVA)
A balanced one-way ANOVA was performed to 
statistically compare changes in the magnitude of the 
regression coefficients between locations in one sample 
and between skin samples obtained from different 
animals. Maps from each of the four samples from 
each animal constituted a group that consisted of four 
sets of 100 spectra per tissue slice. A linear model was  
used that assumes the means of the different groups are 
statistically the same. The ANOVA model is described by 
Equation (3):

yij = αj + εij                                              (3)

where yij is a matrix of coefficients with each column 
representing data for a different group, αj is a matrix 
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whose columns are the group means (mean values for 
a given animal), and εij is the matrix of unmodeled 
residuals. MATLAB® software (Version 7.0, The 
MathWorks, Inc.) was used to calculate probability 
(p values) for the null hypothesis that the regression 
coefficients for a particular chemical component obtained  
from the four animals belong to the same population. In 
other words, this p value corresponds to the probability 
of the null hypothesis being true or that the mean values 
are the same for each group. If the p value is equal to 
one, this indicates that sample means of all groups 
come from the same population distribution and that 
the variance between groups (in this case between 
animals) is statistically larger than the variance within  
groups (between map locations for a single tissue slice). A 
p value near zero indicates that at least one group is 
significantly different than the others.

Results and Discussion
In all, 1930 single beam spectra were collected for this 
initial study. These spectra correspond to both air and 
tissue spectra collected from 16 individual skin slices 
taken from four separate animals. For each skin slice, 
spectra were collected at 100 evenly spaced locations over  
a 4.80 × 3.60-mm2 area. Spectra were measured repeatedly 
from the center position to determine variations in the 
composition and integrity of the tissue matrix. Data 
collection for each map required approximately 3 hours, 
including 30 minutes for the tissue to thaw to room 
temperature and 2.5 hours to collect spectra from 100 
locations for the map.

Single Beam and Absorption Spectra
Raw single beam spectra collected from one tissue slice 
and the corresponding absorption spectra are presented in 
Figure 2. These spectra are representative of the full data 
set, as the map for this skin slice is neither more nor less 
heterogeneous than the others. The basic shape of each 
spectrum is controlled by the relative amounts of water, 
protein, and fat at each location. The broad absorption 
properties of water create the overall curved structure 
of each spectrum.12 Absorption bands around 4600 cm-1 
correspond to protein molecules, and those centered at 
approximately 4350 and 4270 cm-1 correspond to the long 
aliphatic chains associated with fat molecules within the 
tissue matrix.11

In addition to the chemical features noted earlier, 
spectral offsets are also evident in both single beam 
and absorbance spectra presented in Figure 2. These 
offsets correspond primarily to the scattering of incident 

Figure 2. Representative spectral data from Slice 1 for Rat 3 showing 
(A) raw, single beam spectra, (B) absorbance spectra referenced to air, 
and (C) residual spectra after regression fitting. AU, absorbance units.

radiation as this light propagates through the tissue slice. 
No significant variations are evident in the slope of the 
underlying baseline for these spectra.

Spectral quality is of paramount importance for 
successful noninvasive glucose monitoring.13 A key 
indicator of spectral quality is the RMS noise on 100% 
lines. RMS noise values are summarized in Table 1 for 
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each of the 16 maps. Values are provided for both air 
and tissue measurements associated with each map.

Root mean square noise values for air give an indication 
of the basic spectrometer performance. Results in Table 1  
indicate that the spectrometer performance was 
essentially the same for samples associated with the first 
two animals and then performance degraded slightly for 
the third and fourth animals. As indicated in Table 1,  
average values are 31.3, 32.0, 39.7, and 49.3 microabsorbance  
units (µAU) for each animal. For this particular instrumental 
configuration, the InSb detector is susceptible to minor 
shifts in position, which results in slight misalignment 
over time, which is likely responsible for the degradation  
in performance indicated in these air 100% lines.

Likewise, values for the RMS noise on 100% lines are 
significantly higher for the third and fourth animals 
compared to the first and second animals. Average values 
across skin slices for each animal are 723, 690, 1037, and 
1115 µAU. For these tissue spectra, differences in RMS 
noise levels are primarily an indication of the thickness 
of the specific tissue section being analyzed. Scattering 
by the tissue matrix and absorption by water are related 
exponentially to the thickness of the skin slice. Both  
cause a reduction in radiant power reaching the detector, 
thereby reducing the measured signal, lowering the 
signal-to-noise ratio, and increasing the RMS noise on 

100% lines. Results in Table 1 indicate that, on average, 
thickness of the skin tissue slices is greatest for the 
fourth animal and thinnest for the second animal.

In general, values for the RMS noise on 100% lines 
are 22 to 26 times higher for tissue spectra than for 
corresponding air spectra. This increase in RMS noise is 
caused by strong attenuation of the propagating radiation  
by the tissue matrix, caused primarily by scattering and 
water absorption. Lower RMS noise levels can be realized 
using thinner slices of skin. According to the Beer–
Lambert law, thinner tissue samples result in smaller 
absorption signals for protein and fat, thereby degrading 
sensitivity for analysis of the chemical composition of 
the tissue slice. In practice, a compromise is needed in  
regards to the thickness of the tissue slice in order to 
balance spectral quality (RMS noise on 100% lines) and 
chemical sensitivity.

It is important to underscore a principal limitation of 
spectra collected in this experiment. RMS noise levels 
for these tissue spectra range from 418 to 1475 µAU. 
Even the lowest level of RMS noise is at least a factor 
of 10 too high for the measurement of glucose in these 
slices of skin tissue.14 RMS noise levels must be on the 
order of tens of microabsorbance units for successful 
glucose measurements. Nevertheless, these RMS noise 
levels are sufficiently low to estimate levels of the major 

Table 1.
Root Mean Square Noise on 100% Lines over the 4600- to 4400-cm-1 Spectral Range

Slice

Rat 1 Rat 2

Air Tissue Air Tissue

Meana RSDb Mean RSD Mean RSD Mean RSD

1 31 ± 4 14% 922 ± 61 6.6% 30 ± 1 3.3% 830 ± 20 2.4%

2 31 ± 6 20% 640 ± 130 20% 34 ± 1 2.9% 448 ± 32 7.1%

3 33 ± 5 15% 703 ± 37 5.3% 31 ± 1 3.2% 569 ± 28 4.9%

4 30 ± 4 14% 625 ± 8 1.3% 32 ± 4 12% 911 ± 44 4.8%

Slice

Rat 3 Rat 4

Air Tissue Air Tissue

Mean RSD Mean RSD Mean RSD Mean RSD

1 42 ± 8 19% 1040 ± 55 5.3% 52 ± 5 9.6% 1095 ± 65 5.9%

2 41 ± 8 19% 1090 ± 40 3.7% 49 ± 8 16% 1470 ± 49 3.3%

3 32 ± 4 12% 792 ± 23 2.9% 48 ± 5 10% 418 ± 25 6.0%

4 44 ± 6 14% 1130 ± 49 4.0% 47 ± 2 4.2% 1475 ± 76 5.2%

a Mean ± standard deviation (2 degrees of freedom for air, 12 degrees of freedom for tissue).
b Relative standard deviation.
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absorption features and that the principal features in  
the skin slice spectra are well modeled by the proposed 
set of six standard spectra. Nevertheless, nonrandom 
spectral features are evident in the residual spectra, 
which indicate that more chemical information is 
embedded within these tissue spectra.

Chemical distribution maps are presented in Figure 3 for  
a representative tissue slice (Slice 1 for Rat 3 in Table 1).  
Separate maps illustrate the distribution of water 
(Figure 3A), collagen protein (Figure 3B), keratin protein 
(Figure 3C), fat (Figure 3D), spectral offset (Figure 3E),  
and sloping baseline (Figure 3F) within this slice of 
skin tissue. These two-tone distribution maps plot a 
density of color at each pixel to represent the average 
of the four surrounding tissue locations. Contour lines 
represent regions where the difference across the line 
either increases or decreases by one-tenth of the overall 
change. Finally, a pair of white-dotted circles is included 
in Figure 3A to indicate the relative size of the optical 
fibers used to collect noninvasive spectra from living rats  
in the past.8 In this case, the fiber diameter is 1.8 mm.

The maps in Figure 3 clearly illustrate variation in the 
component distribution across the tissue slice. Larger 
amounts of each component are indicated by a lighter 
shade of color. A higher density of contour lines indicates 
greater variation across the tissue slice. Based on visual 
inspection, the component demonstrating the largest degree 
of variation is the spectral offset term, while variations 
in the baseline slope are the smallest. In terms of the 
chemical components, the order of variation across the 
tissue slice is collagen > fat > water > keratin.

For each of the measured components, the degree of 
heterogeneity is relevant in relation to the diameter of 
the fiber-optic probe, or the dimension of the incident  
near-infrared light. These maps illustrate that moving the 
fiber-optic probe will result in the probing of skin tissue 
with different chemical compositions. Such variations in  
the chemical composition of the sample will certainly 
alter the nature of near-infrared absorption spectra 
collected noninvasively.

Analysis of Tissue Heterogeneity
Aside from evaluating chemical distribution maps, 
the degree of tissue heterogeneity can be assessed by 
comparing the magnitude of the different regression 
coefficients at different positions within each tissue slice. 
The different regression coefficients measured for Slice 1  
from Rat 3 are presented graphically in Figure 4. In 
Figure 4A, the magnitude of each regression coefficient  

components within the skin matrix, therefore providing  
a means to map spatial distribution of these components.

Chemical Distribution Maps
Chemical distribution maps are created by analyzing 100 
near-infrared spectra collected over an area of 4.8 × 3.6 mm2.  
Each spectrum corresponds to a 480 × 360-µm2 rectangular 
block of tissue within this overall area, as illustrated 
schematically in Figure 1. The relative amount of each 
component (water, collagen, keratin, fat, constant offset, 
and baseline slope) is estimated by fitting each spectrum 
to a set of standard spectra. The resulting regression 
coefficients constitute an estimate of the amount of each 
component in the measured block of tissue.

Quantitative estimates from the regression coefficients 
are related directly to the amount of the component 
used to generate the standard spectrum. For example, a  
1-mm thick sample of water was used to determine the 
standard water spectrum that was used in the regression 
analysis. If the resulting regression coefficient is 0.5, then 
the estimated thickness of water in that block of the skin 
slice is 0.5 mm. Similarly, a 1-mm thick layer of bovine 
fat was used to create the standard fat spectrum, and a  
0.4-mm thick section of human fingernail was used for  
the standard keratin spectrum. Unfortunately, the amount 
of protein used to generate the standard spectrum 
for collagen cannot be quantified in the same manner 
because a mixture of protein and potassium bromide 
was used to generate this spectrum. Nevertheless, 
relative changes in the amount of collagen can still be  
obtained from the corresponding regression coefficients, 
even though the absolute amount of protein cannot be 
determined in this case.

For each rectangular block, the incident near-infrared 
radiation penetrates through the epidermis and dermis 
layers of the skin slice. Of course, each of these layers, 
as well as the corresponding sublayers, possesses a 
different distribution of water, protein, and fat, which is 
consistent with their different physiological functions.15 
The microspectroscopic measurements used here cannot 
distinguish between these different layers, so the fitted 
regression coefficients represent a weighted average 
through all tissue layers.

Figure 2C shows residual spectra obtained after 
subtracting fitted spectra from original tissue absorption 
spectra. The magnitude of these residual spectra is  
approximately 75-fold lower than the original absorbance 
values. Such small residuals indicate that the fitting 
procedure removes a large fraction of the original 
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Figure 3. False color distribution maps for Slice 1 for Rat 3 for (A) water (dashed circles represent fiber-optic size), (B) collagen type I, (C) keratin,  
(D) fat, (E) spectral offset, and (F) slope. Solid black contours denote 10% of the overall change in coefficient magnitude.

is plotted for the 100 different spatial locations within 
the tissue slice. Although such a plot provides no spatial 
information concerning the variation in these coefficients,  
it clearly displays the degree of variation of each 
regression coefficient. This plot clearly reveals that the 
coefficient for the constant term has the highest degree  
of variation relative to all other coefficients.

In comparison, Figure 4B plots the magnitude of the 
regression coefficients obtained from tissue spectra 
collected repeatedly from the center location of the 
tissue slice. These reference tissue spectra are collected 
periodically throughout the course of the data collection 
session for each map. Over the course of the data 
collection, little difference is observed for each coefficient. 

Certainly, the magnitude of variation is significantly 
less for this reference location compared to the different 
locations within the tissue matrix. These findings indicate 
that variations observed in Figure 4A correspond to 
differences in the tissue composition and not variations 
caused by degradation of the tissue matrix over time or 
changes in performance of the instrumentation.

Table 2 summarizes the mean, standard deviation, and 
relative standard deviation for each coefficient for Slice 1  
of Rat 3. Values are provided across the entire tissue 
matrix as well as for the reference point. Lower relative 
standard deviations are noted for reference point spectra. 
Small standard deviations demonstrate the stability of 
both tissue integrity and instrument performance.
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analyzed corresponding to the following two groupings: 
(1) variability between animals and (2) variability 
between locations for an individual animal. This 
analysis indicates that animal-to-animal variation for all 
four chemical components is significantly higher than 
variations between samples for a given animal or for  
variations between locations within a single tissue slice, 
with more than 99% probability (p values < 0.01). On the  
basis of these results, skin tissue samples from different 
animals must be treated as different distributions with 
significantly different values for both mean and standard 
deviation.

Distributions within and between animals can be 
visualized in the Gaussian distribution curves presented  
in Figure 5. Each graph provides a set of Gaussian curves 
for each animal where each Gaussian curve represents 
the pooled regression coefficients for each chemical 
component (water, collagen protein, keratin protein, and 
fat). This presentation of data clearly illustrates that 
significant differences exist between animals. Although  
considerable overlap is observed in some cases, such as 
in the collagen distribution for Rats 2 and 4 shown in 
Figure 5D, major differences are observed for each set of 
distribution curves. These findings are consistent with 
the ANOVA results presented earlier.

Table 3 summarizes the measured regression coefficients  
for each component for each animal. As noted earlier, 
these values can be related quantitatively to the amount 
of each component within the optical path. Given that 
the pure component samples used for water and fat were  
1 mm thick, the magnitude of the coefficient is equivalent 
to the estimated thickness of water and fat within the 
optical path in millimeter units. These values represent 
the effective optical path length for these components. The 
thickness of the standard keratin material was 0.4 mm,  
which corresponds to a range of sample keratin 
thicknesses of 35–42 µm. This range is a reasonable 
estimate of the epidermis layer thickness for rat skin.16

Discussion

Magnitude of Tissue Heterogeneity
Fourier transform infrared microspectroscopy is used 
in this work to measure the distribution of chemical 
components in rat skin. This method provides micrometer-
scale resolution with chemically sensitive detection.17 
Measurement in the near-infrared range requires no 
special tissue treatment or staining. Thus, the sample is 
studied in a condition that is close to the actual in vivo 
environment. Freezing tissue in liquid nitrogen stops 

Figure 4. Magnitude of regression coefficients for Slice 1 from Rat 3 
for (A) 100 locations of the map and (B) central reference point.

Table 2.
Regression Coefficient Statistics for Slice 1 of Rat 3

Component
Tissue matrix Reference point

Mean (±SD)a RSDb Mean (±SD)c RSD

Water 0.40 ± 0.02 5.0% 0.393 ± 0.001 0.3%

Collagen I 0.59 ± 0.04 7.0% 0.60 ± 0.01 2.0%

Fat 0.10 ± 0.02 20% 0.101 ± 0.002 1.9%

Keratin 0.11 ± 0.01 11% 0.105 ± 0.003 3.0%

Offset 0.59 ± 0.05 8% 0.62 ± 0.02 3%

Slope –0.025 ± 0.005 18.8% –0.025 ± 0.002 8.1%

a Degree of freedom = 99.
b Relative standard deviation.
c Degree of freedom = 14.

The chemical distribution collected for each tissue slice 
can be pooled to examine the tissue heterogeneity 
between animals. The corresponding ANOVA evaluation 
was performed where the variability of data was 
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Figure 5. Gaussian distribution profiles of fitted regression coefficients for (A) water, (B) collagen type I protein, (C) fat, and (D) keratin protein  
for individual animals: Rat 1 (red), Rat 2 (blue), Rat 3 (green), and Rat 4 (black).

Table 3.
Composite Regression Coefficients for Each Set of Animal Skin Samplesa

Component
Animal

Rat 1 Rat 2 Rat 3 Rat 4

Water 0.51 ± 0.03 0.44 ± 0.03 0.42 ± 0.03 0.45 ± 0.06

Collagen 0.53 ± 0.07 0.48 ± 0.08 0.57 ± 0.07 0.49 ± 0.04

Fat 0.02 ± 0.03 0.05 ± 0.04 0.10 ± 0.04 0.03 ± 0.03

Keratin 0.12 ± 0.02 0.10 ± 0.01 0.09 ± 0.02 0.10 ± 0.01

Offset 0.53 ± 0.08 0.54 ± 0.08 0.67 ± 0.07 0.6 ± 0.2

Slope –0.005 ± 0.007 –0.01 ± 0.01 –0.023 ± 0.008 –0.01 ± 0.01

a Mean value (± standard deviation) with 396 degrees of freedom for each value.
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biochemical processes and preserves tissue composition 
for the optical measurement. Two main modes are used 
to obtain spatial information about tissue: mapping and 
imaging.18 Although the imaging approach reduces the 
collection time dramatically, mapping and imaging supply 
essentially the same chemical information.19 In this work, 
large areas of skin are characterized by limiting each 
map to 100 locations and spacing them sufficiently apart  
to provide distribution maps in reasonable time periods.

The distribution maps in Figure 3 illustrate that the 
measured heterogeneity of the chemical components is 
certainly significant on the length scale of the optical 
measurement. With a diameter of 1.8 mm, light exiting 
the optical fibers will encounter different distributions 
of water, protein, and fat, depending on the specific  
location of the fiber-optic probe. The degree to which this 
magnitude of chemical heterogeneity impacts noninvasive 
glucose measurements has yet to be determined in a 
quantitative manner.

The distribution maps in Figures 3E and 3F also reveal 
significant changes in the offset and slope terms of the 
regression function. The offset term accounts for differences 
in optical throughput as light propagates through the tissue. 
The offset term mainly models scattering processes and 
is related to the number of interfaces within the tissue 
matrix with differences in the refractive index. The  
slope term, however, models changes in the shape of the 
spectral baseline, which is highly sensitive to changes in 
the temperature of the sample.20 Again, the distributions 
of offset and slope terms are significant relative to the 
diameter of the optical fiber probes.

Component Correlations
Correlations between the different components can be  
investigated through an analysis of collected data. Inspection 
of the distribution maps presented in Figures 3B and 3D 
reveals an inverse correlation between the distributions 
of water and fat. The darker shaded areas in the water 
distribution map (higher water content) correspond to 
the lighter shaded area in the fat map (lower fat content).

A more complicated picture is revealed from a correlation 
analysis between all measured regression coefficients. In  
this analysis, coefficients of correlation (R) were calculated 
for all fitted components for each map on the basis of 
the regression coefficients measured from the 100 spectra 
collected across each tissue slice. In some cases, a strong 
correlation is obtained between two components, while 
the same components have limited or no correlation in 
other skin samples. Table 4 provides an indication of the 

magnitude of each correlation and lists the maximum, 
minimum, and median correlation coefficients for each 
component correlation over all 16 tissue samples. Table 
entries are sorted by the absolute value of the median.

Although a complete analysis of the values in Table 4 is  
beyond the scope of this article, a number of interesting 
features can be pointed out. First, the strongest correlations 
are negative; in fact, most of the median correlation 
coefficients are negative. Second, the strongest correlations 
for 12 of the 15 correlation pairs were observed with 
samples taken from either Rat 1 or Rat 2. None of the 
strongest correlations were taken from Rat 3. Seven of 
the weakest correlations for the 15 correlation pairs were  
obtained from Rat 4. Third, fat-to-slope, water-to-fat, and 
offset-to-slope correlation pairs have the most consistent 
and strongest correlations (median magnitude >0.5) 
across all samples. Fourth, water, fat, and collagen are 
strongly correlated for Slice 1 from Rat 2. Fifth, for every 
correlation pair, at least one maximum or minimum value 
exists that shows a strong correlation. Finally, a larger 
sample population is needed to enable a more rigorous 
analysis and to permit identification of statistical outliers.

Limitations of Microspectroscopic Analysis
Accuracy of fitted data and relevance of distribution 
maps are related to two important parameters. First, 
transmission measurements, like those used here, tend to 
broaden the features seen in microscopic maps.16 Such 
a broadening effect will affect spatial resolution adversely, 
thereby degrading accuracy of the distribution maps. 
Second, the spectral standards used to fit tissue slice 
spectra must match the spectral features associated 
with the main chemical components within the skin 
tissue matrix accurately. The structure in residual 
spectra presented in Figure 2C is a clear indication that 
tissue spectra are not completely modeled by the six 
component spectra used in this study. This systematic  
difference between the fitted spectra and skin spectra 
can correspond to either a mismatch between standard 
spectra and in situ spectra of the tissue components or 
an insufficient number of standard spectra.

Despite the aforementioned complications, the tissue matrix 
is reasonably well characterized by microspectroscopy. 
Indeed, microspectroscopy provides a spatial resolution 
of 220 µm, which is sufficient to detect changes in the 
biochemical makeup within the tissue matrix, as 
demonstrated in Figure 3. The degree of chemical 
heterogeneity is on the same length scale as common 
noninvasive glucose measurements, including near-infrared 
spectroscopy, Raman spectroscopy, and methods based  
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Table 4.
Selected Coefficients of Correlation (R) for Fitted Skin Componentsa

Component 
correlation

Maximum Minimum
Median

R Sample R Sample

Fat to slope –0.1793 Rat 4 Slice 1 –0.7805 Rat 2 Slice 3 –0.5750

Water to fat –0.1152 Rat 1 Slice 1 –0.8762 Rat 2 Slice 1 –0.5719

Offset to slope 0.0281 Rat 3 Slice 2 –0.7318 Rat 2 Slice 3 –0.5394

Water to collagen –0.0282 Rat 4 Slice 2 –0.9007 Rat 2 Slice 1 –0.4866

Fat to keratin –0.1165 Rat 1 Slice 4 –0.6935 Rat 1 Slice 1 –0.4574

Fat to offset 0.7377 Rat 1 Slice 1 –0.3550 Rat 3 Slice 2 0.3911

Keratin to slope 0.7171 Rat 1 Slice 1 –0.1727 Rat 2 Slice 4 0.3866

Water to offset 0.3251 Rat 1 Slice 1 –0.7830 Rat 4 Slice 2 –0.3715

Water to slope 0.6289 Rat 2 Slice 3 –0.0083 Rat 4 Slice 1 0.3327

Collagen to offset 0.3136 Rat 4 Slice 4 –0.5516 Rat 1 Slice 3 –0.2998

Keratin to offset 0.4933 Rat 1 Slice 3 –0.9085 Rat 1 Slice 1 –0.1731

Collagen to slope 0.3320 Rat 4 Slice 3 –0.6939 Rat 4 Slice 4 –0.1114

Collagen to fat 0.8514 Rat 2 Slice 1 –0.3653 Rat 4 Slice 3 0.0830

Water to keratin 0.4328 Rat 3 Slice 2 –0.7100 Rat 1 Slice 3 –0.0712

Collagen to keratin 0.5555 Rat 4 Slice 3 –0.6179 Rat 4 Slice 4 0.0342

a Shaded rows correspond to negative values for the median, indicating a negative correlation.

on changes in the scattering properties of skin. Indeed, 
as optical throughout is critical for all optical approaches, 
the distribution presented in Figure 3E clearly illustrates 
that all optical methods will be sensitive to the exact 
location of the measurement.

Relevance of the Animal Model
A major research objective of ours is to improve our 
understanding of this animal model for noninvasive 
glucose measurements. This model involves the collection 
of transmission spectra across a thin pinch of skin 
from the back of the neck of the animal. Near-infrared  
spectra collected from this region of the rat body match 
noninvasive transmission spectra collected from a pinch  
of skin from the back of the hand of human subjects.8

The location on the animal is critical because the 
composition of rat skin varies significantly in thickness 
from site to site and the biochemical composition of rat 
skin is location dependent.21 Variations in fatty acid and 
ceramide content of rat epidermal culture and human 
skin have been reported.22 The selected measurement 
site is selected to reduce the amount of adipose tissue 
within the transmission region. Adipose tissue contains 
molecules with long aliphatic chains that exhibit strong 
absorption bands in the region of 4200–4400 cm-1.  

The absorption of light at these frequencies by the fat 
molecules adversely affects the signal-to-noise ratio in the 
spectral region most important for glucose measurements.

Our previously published findings illustrate that 
transmission spectra collected over the combination 
spectral region from rat neck skin match those collected 
from skin on the back of the hand of human subjects.8 
The most pronounced difference is in scattering offset 
that is incorporated into the regression model. The six 
components used in the current study can successfully 
model near-infrared spectra from the back of the human 
hand with a spectral residual similar to that of the rat 
skin residual presented in Figure 2C.

Although this rat skin model adequately matches the 
principal spectral features of our noninvasive spectra 
collected across human skin,8 there is no indication that 
the chemical heterogeneity found for rat skin samples 
is representative of the distribution in human skin. 
However, a mid-infrared microspectroscopic study of pig  
skin revealed spatial distributions of lipid and protein 
similar to those reported here, which suggests that our 
findings are not unique to rat skin.15 Clearly, collection  
and interpretation of near-infrared tissue maps of human 
skin tissue are warranted to address this critical issue.
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Conclusions
Microspectroscopic methods are established to map  the 
distribution of the major chemical components along two  
dimensions of 16 samples of excised rat skin tissue. The  
resulting chemical distribution maps clearly reveal chemical 
heterogeneity on a length scale that is similar to the 
dimensions used to collect skin spectra for noninvasive 
glucose measurements. Results show ordered chemical 
regions on the order of 500–800 µm for water, collagen 
protein, keratin protein, and fat. A similar structure is 
observed for terms that characterize changes in the 
scattering properties of the tissue, as well as changes 
in the temperature of the sample matrix. An analysis 
of variance reveals that the animal-to-animal variation 
is significant and that the chemical variance cannot be 
treated as coming from a single distribution. 

Future noninvasive glucose techniques must recognize 
the possible existence of this level of tissue heterogeneity. 
Although the same level of heterogeneity has not been 
demonstrated with human skin tissue, the implications of 
such heterogeneity are significant and cannot be ignored. 
Appropriate corrections are needed to diminish the 
impact of tissue heterogeneity on the accuracy of future 
noninvasive glucose measurements. Still, the impact 
of this degree of tissue heterogeneity on the ability to 
measure glucose with near-infrared spectroscopy must 
be quantified, and the magnitude of heterogeneity 
in human tissue must be determined to establish its 
significance more fully.
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