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SYMPOSIUM

Abstract
Background:
In the development of noninvasive glucose monitoring technology, it is highly desirable to derive a calibration 
that relies on neither person-dependent calibration information nor supplementary calibration points furnished 
by an existing invasive measurement technique (universal calibration).

Method:
By appropriate experimental design and associated analytical methods, we establish the sufficiency of multiple 
factors required to permit such a calibration. Factors considered are the discrimination of the measurement  
technique, stabilization of the experimental apparatus, physics–physiology-based measurement techniques for 
normalization, the sufficiency of the size of the data set, and appropriate exit criteria to establish the predictive value 
of the algorithm.

Results:
For noninvasive glucose measurements, using Raman spectroscopy, the sufficiency of the scale of data was 
demonstrated by adding new data into an existing calibration algorithm and requiring that (a) the prediction 
error should be preserved or improved without significant re-optimization, (b) the complexity of the model 
for optimum estimation not rise with the addition of subjects, and (c) the estimation for persons whose data  
were removed entirely from the training set should be no worse than the estimates on the remainder of the 
population. Using these criteria, we established guidelines empirically for the number of subjects (30) and skin  
sites (387) for a preliminary universal calibration. We obtained a median absolute relative difference for our 
entire data set of 30 mg/dl, with 92% of the data in the Clarke A and B ranges.

Conclusions:
Because Raman spectroscopy has high discrimination for glucose, a data set of practical dimensions appears 
to be sufficient for universal calibration. Improvements based on reducing the variance of blood perfusion 
are expected to reduce the prediction errors substantially, and the inclusion of supplementary calibration points for  
the wearable device under development will be permissible and beneficial.
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Background

Given the resources and time invested in the 
development of noninvasive glucose measurement 
technology, there is ample motivation to investigate 
whether the difficulties are generic and whether the 
obstacles are avoidable. Some of these difficulties arise 
from aspects of the problem that are qualitatively 
independent of the method of measurement employed but 
that can be either quantitatively mitigated or exacerbated 
depending on the mechanism of measurement that 
is invoked. Glucose is less than 0.1% of human tissue 
by weight. It follows that variations of skin properties 
will produce changes in signal much greater than the 
changes due to glucose variations. Because the glucose 
signal is much smaller than the total measured signal, 
changes imposed on the whole signal by extraneous 
sources have the potential of confounding the extraction 
of the glucose signal; consequently, variances due to 
thermal, mechanical, optical, or other instabilities must 
be identified and suppressed.

A more subtle consequence of the dominance of the 
signal by interfering substances is that the model 
required for prediction of the glucose will be complex, 
containing many independent variables. This can be 
understood by observing that the variance of each 
substance whose measurement signature has significant 
overlap with glucose must be extracted to predict glucose 
and that, given the relatively small glucose concentration, 
there may be many such substances. The quantity of 
reference glucose measurements to build the model must 
then be correspondingly large, or the model will over 
fit the data. The required size of the data set, however, 
cannot be determined a priori, because the complexity 
of the model is not ascertained until a preliminary 
calibration has already been generated. In addition, 
the size of the required data set must be estimated on 
the basis of how many uncorrelated data points are 
required, but it is known that the time series of varying 
glucose measurements are correlated over time frames 
of 30–60 min.1 Hence for a time series, the number of 
independent data may be much less than the number 
of measurements. For all these reasons, there has been 
no guideline for designing an appropriate experimental 
program, and the required scale of the data is easily 
underestimated.

Another problem, of great subtlety, is the establishment 
of appropriate exit criteria that prove that the algorithm 
developed will predict new data properly. For this 

purpose, it is necessary to have recourse to the process 
of cross validation, whereby some portion of the data 
(training set) is extracted from the data set to compute the 
calibration model, whereas the remaining data (test set) 
are predicted by applying the resultant calibration to the 
data of the test set. Those predictions are then compared 
with the known blood glucose reference values to 
establish the quality of the estimates. It is likely, however, 
that initially obtained cross-validated predictions will 
require improvement. The algorithm may then be 
modified using the criteria for validating changes that the 
cross-validated predictions improve. Unfortunately, the 
validity of the cross-validation may now be substantially 
impaired, because information about the reference 
glucose values of the test set has been explicitly used by 
the analyst to improve the algorithm. In the absence of 
a valid cross validation, there are no remaining means 
to establish the predictivity of the calibration. Suitable 
protocols are required to avoid this pitfall.

Another general consideration is that it is unlikely that 
the same quantity of glucose in two skin samples will 
present the same amount of signal to the apparatus; 
hence a fundamental problem of normalization arises. 
Further, it is known that the glucose measured in skin 
will come from a mix of blood and interstitial fluid (ISF). 
The proportions may be site dependent. The equilibrium 
glucose concentrations, in general, differ between the 
fluids, and for rapidly varying glucose, the difference 
in glucose concentrations will be time dependent. If the 
noninvasive measurement data are to be relied upon 
for an estimate of the normalization or of the time-
dependent concentration of glucose in the two fluids, the 
required algorithm for glucose prediction is nonlinear.  
The complexity of nonlinear models can clearly be far 
higher than that of linear models. For example, if there are 
N independent variables in a linear model, there would 
be N(N-1)/2 independent variables in a general quadratic 
model based on these N variables. Added complexity 
could impose a need for correspondingly larger data 
sets to be predicted in order to avoid over fitting. It is 
therefore preferable to base models for normalization 
and delay between fluids on the physics and physiology  
of the system, such that minimal additional complexity 
is required of the model. 

A key factor that determines relative complexity of models  
is the discrimination of the measurement method. To the 
extent that the form of the signature of an interfering 
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substance is similar to that of the signature of glucose, 
terms that are proportional to the interfering substance 
will have significant weight in the model. If, on the other 
hand, the signature of glucose is completely orthogonal 
to that of every interfering substance, the model would 
devolve to a single term. Also, to the extent that glucose 
and signals from interferers are similar, we would 
expect that the portion of the glucose signal available 
for calibration as a proportion of the total signal will  
shrink. That is because the net analyte spectrum (NAS)2 
(signature) of glucose will be the glucose spectrum 
(signature) with all the spectra (signatures) of the 
interferers projected out; therefore, methods producing 
highly distinctive glucose signatures are preferred. 

Vibrational spectroscopies elicit well-defined, relatively 
unique, sharply articulated spectra, because the vibrational 
modes of the molecule are specific to the structure and 
composition of the molecule. In Raman spectroscopy, a 
photon having a frequency of the difference between the 
exciting frequency and the frequency of the symmetric 
vibrational mode is generated (Stokes wave). Therefore, 
although the fundamental vibrational frequencies are 
in the mid-infrared, it is possible to use sources and 
detectors that operate at optimum wavelengths in terms 
of availability and desirable optoelectronic properties. 

Other efforts to measure glucose noninvasively in human 
subjects by Raman spectroscopy have been undertaken at 
Syracuse University3 and the Massachusetts Institute of 
Technology.4 The work described here is distinguished 
from previous efforts, because it focuses on the 
experimental and analytic measures required to achieve 
a universal calibration. Such a calibration employs no  
a priori information on persons, nor any supplementary 
calibration points from an invasive measurement. It also  
excludes no data. In that context, universality does 
not imply that the calibration presented is completely 
comprehensive, adequately comprising all possible 
subjects. Rather we use the term “universal” in the sense 
that the population interrogated forms a self-consistent 
universe of subjects that is self-calibrating without over 
fitting. Finally, counter measures for the obstacles that 
were defined in the foregoing discussion are addressed 
explicitly.

Methods

Measurement
A block diagram of the Raman measurement apparatus 
is presented in Figure 1. Three optical sources are 
employed, which are accessed through an optical switch. 
A laser that excites the sample sequentially at 829 and 

Figure 1. Raman spectroscopic apparatus for noninvasive glucose measurement. ND, neutral density; CCD, charge-coupled device.



236

Requirements for Calibration in Noninvasive Glucose Monitoring by Raman Spectroscopy Lipson

www.journalofdst.orgJ Diabetes Sci Technol Vol 3, Issue 2, March 2009

827 nm is used to obtain the primary Raman spectra of 
the skin. The input power is 220 mW delivered in a 1 mm 
diameter spot. Excitation at two different wavelengths 
enables a straightforward extraction of the fluorescence 
by subtraction, as the fluorescence spectrum is nominally 
invariant with small changes in excitation wavelength, 
whereas the Raman spectral features will shift.5 A skin 
spectrum and the spectrum of glucose in vitro are 
presented in Figure 2. It is apparent that the glucose 
spectrum has a very distinctive signature compared to 
the skin spectrum, the latter spectrum consisting almost 
entirely of interfering substances. 

A 670 nm laser source is employed to elicit the Raman 
spectrum of the OH stretching mode of water. The large 
Raman shift of this mode (3400 cm-1) necessitates shorter 
wavelength excitation for its spectrum to be within the 
band of our spectrometer. It is reasonable to suppose 
that an estimate of water can act as an appropriate 
normalization as the glucose is dissolved in water, and 
we would expect our measured glucose signal to scale 
with water. 

We also employ a white light source for measuring 
diffuse reflectance from the sample. The putative purpose 
is to allow a possible extraction of the different optical 
transfer characteristics of the samples.6,7 Subsequent 
analysis, however, has shown that water is preferred to 
white light for normalization.

An essential aspect of a successful technique is thermal 
stabilization. The temperature rise associated with the 
830 nm laser excitation is excessive if no additional 
heat sinking is supplied to the site.8 To remove the 
heat, we place the skin in contact with a magnesium 
fluoride window, which was chosen primarily for its 
lack of Raman activity. While this suffices to reduce the 
temperature rise to small levels, substances evolving 
from the skin will change the optical characteristics of 
the interface to the window over time. We introduce a 
fluid layer to inhibit this process. In Figures 3A and 3B, 
we present data from experiments with and without our 
stabilization methods. In both cases, a single site on the 
volar forearm was illuminated under conditions where 
no deliberate changes were induced. We monitored three 
quantities: the white light diffuse reflectance amplitude, 
the amount of water as calculated from the OH stretching 
mode, and the magnitude of the 1441 cm-1 line of the 
skin (CH2 scissoring mode). We see significant transients 
in all three measures for the case without stabilization, 
whereas with stabilization, the signals are nominally all 
constant. 

We also make an estimate of blood volume in the site 
from Raman spectra. The spectrum of blood in vitro is 
presented in Figure 4. We found that the 757 cm-1 line 
of blood is in a spectral region with relatively little 
interference from major skin constituents, and that it 

Flat-field corrected skin and glucose spectra
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Figure 2. Typical skin spectrum from the volar forearm and glucose 
spectrum in vitro using an 827 nm excitation source.
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Figure 3. (A) White light diffuse reflectance, water, and integrated 
1441 cm-1 line intensity as a function of time prior to stabilization. (B) 
As in (A), subsequent to stabilization.
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is well correlated with other blood signatures in the  
1600 cm-1 region. Accordingly, we use this line to estimate 
the blood volume, and the estimate is then used for 
normalization. 

Analytical Methods
A spectral data set consists of a series of spectra that 
may be taken at different times, at different skin sites, 
and on different persons. The measured signal can be 
decomposed in the form of 

, (1)

where X(λ,t) is the spectral data, P are basis spectra, and T 
are basis time series. For example, P could be the spectra 
of substances and T their time-dependent concentrations. 
It is possible to make the regression 

 , (2)

where y(t) is the reference blood glucose measurement, Ci 
are the regression coefficients, and C0 is a constant. The 
entropy, S, of such a model is a measure of its complexity 
and would be given approximately by

S = N ln (2B), (3)

where N is the number of terms, and B is the number 
of bits of resolution with which the terms are known. 
Similarly, the entropy of the blood glucose reference 
values y(t) being predicted would be given by Equation (3),  
where N is now the number of independent data, and 
B is the number of bits of resolution with which the 
glucose was measured. To avoid over fitting, the entropy  
of the data must be much greater than the entropy of the 

model, which is a quantitative formulation of Occam’s 
razor. 

We can also formulate the NAS from

 , (4)

where, if Pi are an orthonormal set, we can now get from 
Equations (1) and (2)

. (5)

To introduce the normalization, we make a three-
compartment model as shown in Table 1.

The quantity A1 may differ from unity on the basis 
that the blood in the volar forearm skin site may have 
a different glucose concentration from the blood obtained  
in the reference measurement.9 The quantity A3 is known  
to be small based on rapid metabolism of glucose by the 
cells.10 The blood volume will also be substantially less 
than the ISF volume or intracellular volume.11 

The glucose measured spectroscopically, ys(t), can be 
related to the reference blood glucose by

. (6)

Replacing y(t) with ys(t) in Equation (4) and using 
Equation (5) for the NAS, we get

. (7)

The water signal we measure comes from all three 
compartments. If V3/(V1 + V2) is relatively fixed for the 
skin sites, we can write Equation (7) as

, (8)

where Bl(t) and W(t) are our blood and water 
measurements, respectively, and kb,w are constants of 

Spectrum of human blood 827 nm excitation
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Figure 4. Raman spectrum of fresh human blood with 827 nm 
excitation.

Table 1.
Definition of Variables for Three Compartment 
Model

Quantity Blood ISF Intracellular

Ratio of glucose concentration 
in compartment to reference 
blood glucose concentration

A1 A2 A3

Fraction of site volume 
attributed to each compartment

V1 V2 V3

Fraction of glucose in 
compartment

A1V1 A2V2 A3V3
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proportionality and are, in practice, found to minimize 
the error of the glucose predictions. The quantity Bl(t) is 
proportional to V1 and, as V3 is proportional to V1 + V2, 
W(t) is proportional to V1 + V2. Note that the analysis 
is relatively insensitive to the earlier volume fraction 
assumption, as the net root mean square variance 
contributed by the normalization is approximately 10%. 

In addition to normalization, a single-pole delay model 
is used to describe the time-varying difference between 
the glucose concentrations in the blood and the ISF. 
This model was found to be a suitable approximate 
solution to the differential equations presented in Table 1 
of Reference 10. The exponential decay time constant is 
written in terms of a linear combination of T:

 , (9)

where D0 is a constant.

The target glucose values, y(t), for the regression in 
Equation (8) are modified on the basis of the delay model, 
and the coefficients Ci and Di are found simultaneously 
so as to minimize the error in predicting the modified 
y(t), the required regression now being nonlinear in T. 

In order to make a prediction of blood glucose, the 
delay that is found in Equation (9) needs to be removed 
by inversion. A path integral formalism is employed to 
accomplish this, where the integral is carried out over 
a large sample of possible time trajectories for glucose 
concentrations, which meets realistic physiological 
constraints.

Results

Protocol
A summary of the protocol for a single trial on a single 
person is presented in Table 2.

Clamp studies were strongly preferred over oral glucose 
tolerance tests, as it is possible to elicit a multiplicity of 
different time dependences. Our protocols guaranteed 
such variety, because the choice of an initial negative 
or positive excursion depended on the subject’s initial 
glucose levels. We are thereby able to rule out a  
calibration based on an accidental correlation between an 
extraneous source of variance and a consistent glucose  
time profile, as can occur with oral glucose tolerance 
tests. The rate of change of glucose during clamps was  
as high as 10 mg/dl/min, which is beyond physiological 
limits. All the data, regardless of the rate of change, 

were included in the predictions we presented. The 
measurement categories are further specified in Table 3.

The spectral measurement sequence is specified in  
Table 4.

The time between full sequences was 75 s. 

Blood glucose reference measurements were all made 
using the YSI blood analyzer. During day 1, blood was 
obtained intravenously. On day 2, blood was extracted 
from the fingertip.

A description of the trial population is presented in 
Table 5.

For purposes of cross validation, the data were divided 
into subsets (test sets), each of which consisted of one trial  
for one person. When each test set was to be predicted, all 
the remaining data (training set) were used to calculate 
the calibration. This was done in a permuted fashion 
until all the data was predicted. Because all of a trial 

Table 4.
Sequence of Spectral Data Collection

Duration 
(s)

Number of 
exposures in 

one sequence

Total 
exposures 

(s)

829 nm exposure 10 2 20

827 nm exposure 10 2 20

670 nm exposure 1 1 1

White light exposure 0.1 1 0.1

Table 3.
Detail of Snapshot and Clamp Testing

Duration 
(min)

Site change
Frequency of 

reference blood 
glucose measurement

Snapshots 20 Yes 1 before, 1 after

Clamps Up to 200
Multiple site 

changes 
allowed

1 per 5 min

Table 2.
Breakdown of Clinical Tests by Day for a Single Trial

Snapshot 
prior to clamp

Clamp
Additional 

snapshot(s)

Day 1 1 1 1

Day 2 N/A N/A 3
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for a single person was removed from the training data, 
there were no data from the same day for that person 
in both the training and the test sets. This eliminated 
any possibility of time correlation between the glucose 
values in the two sets, which, if allowed, could yield 
an unduly optimistic prediction. Further, as ten of the 
persons had just one trial, none of those persons’ data 
were in the training set when those persons’ glucose was  
predicted. This helped establish whether the calibration was 
universal. 

Glucose Predictions
The cross-validated predictions versus the reference 
glucose are presented in Figure 5 on the standard Clarke 
grid. The mean and median absolute relative differences  
are 38 and 30 mg/dl, respectively. The percentage of 
points in the A zone and in the A + B zones are 53% and 
92%, respectively. 

In Figure 6, we present a typical time series to 
demonstrate the level of tracking achieved to date with 
glucose values that vary rapidly. The data represent 
several clamp studies on a single individual.

Discussion
To establish that the scale of the data is approaching 
sufficiency for universal calibration, we examined three 
criteria.

1.	Did the addition of substantial additional data to an 
existing algorithm affect the quality of the predictions 
for the previous data? In practice, the uncertainty in 
the estimation of the error is not readily quantified. 
To satisfy this criterion, we require that the error not 
degrade by more than a small fraction of its original 
value, and in practice, the differences are of the order 
of or less than 3 mg/dl. 

2.	Did the complexity of the model for optimum 
predictions cease to increase with the addition of 
data?

3.	Was the error of prediction for those persons with only 
one trial similar to the remainder of the population? 
Since those persons’ data would be predicted from a 
calibration based on a training set containing none 

of their data, we may deduce that the calibration is 
universal if their data are as well predicted.

The additional data were defined as that of the last ten 
persons measured, each of whom had only one trial. 
The choice of the last data taken is not arbitrary, as for 
any other choice of data, it is possible that the existing 
algorithm had already been optimized to the extent that 
the data are over fit. We did not find any statistically 

Table 5.
Trial Subject Population

Number of persons Number of skin sites Fitzpatrick skin types Diabetes status
Number of trials per 

person (2 day protocol)
Total duration of 

study (years)

30 387 1–6 All type 1 1–3 1.15

Cross-validated predictions versus measured blood glucose
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Figure 5. Clarke error grid for noninvasive glucose measurements. 
Data from 30 subjects, comprising 58 clamp studies, 272 snapshots, 
and a total of 387 different skin sites on the volar forearm.
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Figure 6. Tracking of glucose predictions from a single person. Note 
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significant change in the errors for the first 20 persons 
when the last 10 were added. The number of terms for 
optimum prediction actually fell with the added data, 
clearly indicating that the first 20 persons’ data largely 
captured the relevant variances of the bigger population. 
The error of estimation of the last 10 persons was actually 
slightly less than that of the first 20 (the difference not 
being statistically significant), hence all three criteria 
that we have identified were satisfied, and the data 
set appears to be approaching the scale whereby it 
adequately comprises the variances within it. The use of 
supplementary calibration points, as is done with current 
invasive continuous monitors, can result in significant 
improvements in predictions, and for the wearable 
device that is currently under development, it will be 
permissible to include them. For this work, however, our 
purpose was to establish unambiguously that the data 
were approaching sufficient scale for universal calibration, 
and such a demonstration is inconsistent with employing 
supplementary calibration.

Calculations of the entropy of the data with respect to 
the entropy of the model indicate that the ratio of the 
entropies is approximately 20. In counting our data, we 
include the effects of time correlation. In Figure 7, we 
present the glucose profile for a typical clamp study, and 
we fit a polynomial of degree six to the measurements. 
Observing that the fit is very good, we conclude that 
each clamp has only approximately 7 independent data 
(the number of terms in the polynomial), whereas 50 data  
points were collected on the basis of 1 measurement 
every 5 min. We conclude that it is sufficient to have 
approximately 20 times more independent data than 
there are independent variables in the model and that 
the appropriate scale of the data is of the order of that 
in Table 5. 

Having obtained a calibration, it is possible to 
demonstrate, a fortiori, that the method of measurement  
has high discrimination for glucose. In Figure 8, we 
present the NAS and the glucose spectrum. We do 
not expect these spectra to be identical, as the NAS is 
the glucose spectrum with all the interfering spectra 
projected out. The normalized overlap of the glucose and 
net analyte spectra indicates how much of the glucose 
signal is preserved and was calculated to be 0.48. Given 
the large number of interferers that are present at higher  
or similar concentration to glucose, this outcome is a 
robust indication of high discrimination. 

The primary source of random noise is the variance in the 
fluorescence, based on standard photon-counting statistics. 

It is possible to add noise to the data and estimate the 
contribution of the random noise from the increased 
error. That contribution is calculated to be 11 mg/dl, 
hence the net error in the current calibration has very 
little contribution from random noise. We infer, therefore, 
that the primary remaining error arises from the model 
not capturing some relevant variance. The nature of that 
variance can be inferred from examining Figure 6, where 
we see that our prediction tracks rapid glucose excursions 
with varying lags and that there can be an overall 
vertical offset that is site dependent. These observations 
suggest that this behavior arises from variations and 
deficiencies in blood perfusion in the various sites, as 
has been demonstrated for invasive techniques applied  
to the forearm.12 That conclusion is further supported 
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Figure 7. Glucose profile for a single clamp study and a single person. 
The profile is fit to a polynomial of degree 6, where time is the 
independent variable x, the equation for which is presented.
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of the two signals is 0.48, indicating good discrimination.



241

Requirements for Calibration in Noninvasive Glucose Monitoring by Raman Spectroscopy Lipson

www.journalofdst.orgJ Diabetes Sci Technol Vol 3, Issue 2, March 2009

by our observation of delays [Equation (9)] similar to 
those reported in Reference 12. Methods that strongly 
mitigate this effect are currently being implemented, and  
we believe this will suffice to complete an unambiguous 
demonstration of universal calibration to appropriate 
clinical standards. 

Conclusions
On the basis of carefully chosen mathematical criteria, 
we believe that we have demonstrated that a universal 
calibration for noninvasive glucose measurement is 
possible using Raman spectroscopy. We find that a 
data set that is approximately 20 times larger than 
the number of terms used in the predictive model 
and that includes 30 persons with > 300 separate skin 
sites is roughly sufficient. It is difficult to ascertain 
the minimum required scale, because as the data are 
reduced, the self-sufficiency of the set depends on which  
data have been omitted. Very roughly, data on the scale 
approximately one half of that specified did not meet 
our current criteria, which may suggest a lower bound. 
It is also clear that additional data can still be helpful  
in better modeling outliers that appear to be associated 
with circulatory impairments. 

The accuracy of the current measurement is approaching  
the level of clinical usefulness. We find that the remaining 
errors do not arise predominantly from random noise 
and that straightforward mitigation of the variances and 
deficiencies in blood perfusion offers good prospects 
for achieving substantial improvements. In addition, 
in future work on wearable devices, supplementary 
calibration points will be permissible, and that will 
complement the anticipated improved precision arising 
from blood perfusion variance mitigation.
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