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Abstract

Background:
The acceptance of virtual preclinical testing of control algorithms is growing and thus also the need for robust 
and reliable models. Models based on ordinary differential equations (ODEs) can rarely be validated with 
standard statistical tools. Stochastic differential equations (SDEs) offer the possibility of building models that 
can be validated statistically and that are capable of predicting not only a realistic trajectory, but also the 
uncertainty of the prediction. In an SDE, the prediction error is split into two noise terms. This separation 
ensures that the errors are uncorrelated and provides the possibility to pinpoint model deficiencies.

Methods:
An identifiable model of the glucoregulatory system in a type 1 diabetes mellitus (T1DM) patient is used as 
the basis for development of a stochastic-differential-equation-based grey-box model (SDE-GB). The parameters 
are estimated on clinical data from four T1DM patients. The optimal SDE-GB is determined from likelihood-
ratio tests. Finally, parameter tracking is used to track the variation in the “time to peak of meal response” 
parameter.

Results:
We found that the transformation of the ODE model into an SDE-GB resulted in a significant improvement in 
the prediction and uncorrelated errors. Tracking of the “peak time of meal absorption” parameter showed that 
the absorption rate varied according to meal type.

Conclusion:
This study shows the potential of using SDE-GBs in diabetes modeling. Improved model predictions were 
obtained due to the separation of the prediction error. SDE-GBs offer a solid framework for using statistical 
tools for model validation and model development.
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Introduction

Several studies have shown promising potential for automatic insulin delivery in the treatment of type 1 diabetes 
mellitus (T1DM) patients. In the development of control algorithms for an artificial pancreas, virtual T1DM patients are 
a useful tool for preclinical testing and verification. The advantages are several: acceleration of the development 
process, lower costs, and the possibility of testing extreme treatment strategies without having to deal with the 
ethical aspects. The acceptance of virtual preclinical testing is growing and thus also the need for robust and reliable  
models for simulation. Currently, several dynamic models of the blood glucose (BG)–insulin system in T1DM patients 
exist.1–4 The simplest models are used for simulating BG response after an intravenous glucose tolerance test, and 
the most advanced and complex models are used for simulating BG response to a meal [in terms of amount of 
ingested carbohydrates (CHOs)] and to continuous subcutaneous insulin infusion (CSII) from a pump. One of the 
most complex models has been approved for preclinical in silico testing of control algorithms by the U.S. Food and 
Drug Administration.5

The existing models can be categorized as white-box models based on ordinary differential equations (ODEs).  
White-box models are mainly constructed on the basis of physiological knowledge about the system. Solutions to ODEs 
are deterministic functions of time, and hence these models are built on the assumption that future concentrations and 
effects can be predicted exactly.

An essential part of model validation is the analysis of the residual errors (the deviation between the true observations 
and the one-step predictions provided by the model). This validation method is based on the fact that a correct model 
leads to uncorrelated residuals. This is rarely obtainable for white-box models. Hence, in these situations, it is not 
possible to validate ODE models using standard statistical tools. However, by using a slightly more advanced type 
of differential equations, this problem can be solved. By replacing ODEs with stochastic differential equations (SDEs),  
we can obtain uncorrelated residuals both by systematically improving the model and because of the way the 
stochasticity enters the system.

Stochastic-differential-equation-based models are referred to as grey-box models because the structure of the model is 
built on a combination of physiological knowledge, as white-box models, and on statistical information based on the 
observations, as black-box models, which are entirely built on data. Hence, stochastic-differential-equation-based grey-box 
models (SDE-GBs) can be seen as a mix of white-box and black-box models as sketched in Figure 1. An SDE-GB can 
be written as

Figure 1. Illustration of the concept of grey-box modeling. White-box 
models are based mainly on knowledge about the system. Black-box 
models are built on statistical information from the data. Grey-box 
modeling combines the two approaches.

dxt = f(xt,ut,t,q)dt + s(ut,t,q)dw              (1)

yk = h(xk,uk,tk,q) + ek                     (2)

The equations describing the dynamics of the states of 
the system, xt, are formulated in continuous time and are 
separated in a drift term, f(xt,ut,t,θ), and a diffusion term, 
σ(ut,t,θ)dω. The observations, yk, are linked to the states 
through the observation equations, Equation (2), which 
are typically formulated in discrete time and include the 
measurement error, ek. ut represents the inputs and θ the 
parameters of the system.

As seen in Equations (1) and (2), the SDE-GB separates 
the residual error into two separate error terms:

•	 The diffusion, σ(ut,t,θ)dω, representing model approximations and noise originating from unknown disturbances to 
the system, e.g., changes in metabolism due to physical activity, altered stress level, hormone cycle, or simply true 
stochastic behavior and
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•	 The measurement noise, ek, representing the serially uncorrelated error occurring due to imperfect accuracy and 
precision of the analyzing equipment.

Solutions to SDEs are stochastic processes that are described by probability distributions. This property allows for 
maximum likelihood estimation.6

In physiological modeling, SDE-GBs are obvious choices from a theoretical point of view due to their ability to describe 
the stochastic, complex, and unpredictable nature of these systems. The separation of the residual error into diffusion 
and measurement noise results in a more correct description of the prediction error. If the model is describing the data 
properly, this formulation will lead to uncorrelated residuals.

Inclusion of the diffusion has another advantage, mainly related to the model building itself. By investigating the 
diffusion terms, one can retrieve information about how to improve an insufficient model. Diffusion terms that are 
estimated to be relatively large indicate a model mismatch for the relevant part of the model. Accordingly, the diffusion 
terms can help in the search for a more reliable model.7 SDE-GBs have been found to be useful within many areas of 
mathematical modeling of biological and physiological systems.8–12

This article focuses on the advantages of using SDE-GBs when modeling the glucoregulatory system in T1DM patients. 
We start out from a previously published ODE-based model3 and use SDEs and statistical analysis to extend the model  
by adding significant diffusion terms.

Methods

Data
Data from a clinical study conducted at Hvidovre University Hospital as a part of the DIACON project were used.13 
Four CSII-treated T1DM patients performed four different study sequences, including standardized meals and insulin 
boluses. During each study day, three events took place. The first event took place after at least 120 min of BG 
stabilization. It consisted of a standardized solid meal [1 g CHO/kg body weight (BW)] with either a half-meal-size 
insulin bolus calculated on the basis of the patient’s insulin sensitivity factor and insulin-to-carbohydrate ratio or with 
no bolus at all. The second event was introduced 150 min after the meal and was a small or large bolus defined as a 
bolus that would lower BG by 54 or 108 mg/dl, respectively. Finally, after another 150 min, the patient was given a 
standardized liquid snack (event 3; 0.4 g CHO/kg BW). The combination of events on the four study days is depicted 
in Table 1. Patients spent the day in bed and received their normal basal rate of insulin during the whole study day. 
Blood glucose samples were obtained every 10 min (YSI2300 STAT plus, Yellow Springs Instruments, Yellow Springs, OH) 
and plasma insulin concentration was sampled nonequidistantly 23 times during the trial day.

Table 1.
Description of the Four Study Sequences

Patient Event 1 Event 2 Event 3

1 Meal + ½ bolus
65 g CHO + 3.3 U

Small bolus
0.9 U

Snack
28 g CHO

2 Meal without bolus
75 g CHO

Small bolus
1.6 U

Snack
31 g CHO

3 Meal + ½ bolus
105 g CHO + 8.8 U

Large bolus
5.0 U

Snack
44 g CHO

4 Meal without bolus
65 g CHO

Large bolus
2.2 U

Snack
27 g CHO

The Initial White-Box Model
We used the Identifiable Virtual Patient (IVP)3,14 as an 
initial white-box basis for formulating our grey-box model. 
The IVP model is an extended minimal model, including 
meal absorption and CSII. This initial model will be 
presented as an SDE-GB with diffusion. The insulin 
pharmacokinetic (PK) model is a two-compartmental 
model:

dIsubc = 1
t1

⎛
⎜
⎝

ID
CI

 – Isubc

⎞
⎟
⎠
dt + sIsubcdw1             (3)

dIp = 1
t2

(Isubc – Ip)dt + sIpdw2               (4)

where Isubc represents the subcutaneous concentration of insulin (mU/liter) and ID is the input from CSII (mu/min) 
representing the insulin basal delivery rate and boluses. Ip represents the plasma insulin concentration (mU/liter). In this 
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study, the diffusion term parameterized as σdω. σ is a scaling parameter for the diffusion, and dω is assumed to be a 
Wiener process for which the increments are normally distributed.15 The remaining parameter definitions are given in 
Table 2. The glucose–insulin dynamics are described as

dIeff = p2(SIIp – Ieff)dt + sIeffdw3                                                      (5)

dGp = 
⎛
⎜
⎝
– (GEZI + Ieff)Gp + EGP + D2

tm
 + 

GIV

tgVg

⎞
⎟
⎠
dt + sGpdw4                                    (6)

where Ieff is the pharmacodynamic (PD) effect of insulin (min-1) on the BG level, Gp (mg/dl). GIV is the intravenous 
glucose input (mg) administrated during the stabilization period if needed and is modeled as a vector of zeros except 
at the time instants where glucose was given during the clinical study. The meal absorption is described as a two-
compartment model:

dD1 = 
⎛
⎜
⎝

AgCHO
Vg

 + D1
tm

⎞
⎟
⎠
dt + sD1dw5                                                  (7)

dD2 = 1
tm

(D1 – D2)dt + sD2dw6                                                    (8)

where CHO is the rate of ingestion of carbohydrates (mg/min). D1 (mg) and D2 (mg) represent the digestive system.

Table 2.
Identifiable Virtual Patient Model Parameters
Name Unit Description Nominal valuea

τ1 min Time constant related to the insulin movement between the subcutaneous layer  
and plasma 40–131

τ2 min Time constant related to the insulin movement between the subcutaneous layer  
and plasma 10–70

CI liter/min Insulin clearance 0.54–2.01

p2 1/min Delayed insulin action on BG level 8.14 × 10-3–2.33 × 10-2

SI liter/(mU × min) Insulin sensitivity 9.64 × 10-5–1.73 × 10-3

GEZI 1/min Glucose effectiveness at zero insulin 1.00 × 10-8-6.39 × 10-3

EGP mg/(dl × min) Endogenous glucose production rate at zero insulin 0.6–3.45

τm min Peak time of meal absorption 27–107

τg min Time constant for the intravenous glucose administration 1

Ag Dimensionless Bioavailability for carbohydrates 0.9

VG dl/kg BW Volume of distribution for glucose 1.93–4.14
a The values are obtained from Kanderian and coauthors3 except Ag and τg, which were fixed during the estimation.

To specify which states we observe and to introduce measurement error, we construct two observation equations 
linking the observations to the actual state—one for each type of observation: YSI (representing the BG level) and IA 
(representing the insulin level in plasma). For our model, the set of observation equations can be written as

YSI = Gp + exp(eYSI),   exp(eYSI) ∈ N(0,SYSI)                                              (9)

IA = Ip + exp(eIA
),   exp(eIA

) ∈ N(0,SIA
)                                               (10)

where S represents the variance of the measurement noise for each of the two types of observations. The sequence of 
measurement errors, e, is assumed to be independent and identically distributed. If we expect time correlated errors, 
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e.g., if we used observations from a continuous glucose monitor, the correlated noise could be implemented in the 
model as a state.

Stochastic Differential Equation Grey-Box Model Construction
Because of the complex structure of SDEs, estimation of parameters in an SDE-GB is not trivial except for some simple 
cases. Instead, a maximum likelihood method in combination with an extended Kalman filter is used to estimate 
the parameters.12,15 The likelihood function is formulated using the one-step prediction errors, εk, and the associated 
variances, Rk|k-1:15

L(q;YN) = p(YN|q)                                                            (11)

= 
⎛
⎜
⎝
∏

N

k=1
 

exp(– 
1
2 ek R-1   ek)k|k–1

√det(Rk|k–1)(√2p)dim(YN)

⎞
⎟
⎠
p(y0|q)                                                 (12)

YN is the set of observations, and y0 is the initial conditions. For a given set of parameters and initial states, εk and Rk|k-1  
are computed by a continuous-discrete extended Kalman filter as described previously.8,15 The parameter estimates are 
found by maximizing the log-likelihood:

q
^  = argmax{log(L(q;YN|y0))}.                                                    (13)

The corresponding value of the log-likelihood is the observed maximum likelihood value for that data set and 
model. All computations were done using the free statistical software, R (version 2.15.1), and the “CTSMR-package” 
(Continuous Time Stochastic Modeling in R).16

To improve the IVP model using SDEs, the following forward selection strategy was used:

Step 1: The parameters of the ODE version of the model were estimated for each data set. The following parameters 
were fixed: Ag = 0.9 as in Dalla Man and coauthors,1 τg = 1 min, and all diffusion terms were fixed to zero. All initial 
conditions were fixed except for Ieff.

Step 2: One diffusion term at a time was now estimated together with the parameters estimated in step 1 for each data 
set. This was done six times corresponding to the six diffusion terms in Equations (3)–(8).

Step 3: A likelihood-ratio test was used to identify the SDE-GB resulting in the most significant improvement compared 
with the ODE. The test statistic is6

D = 2(log(S
i

L) – log(S
i

L0))                                                      (14)

where i = 1–4, corresponding to each of the four data sets. L and L0 are the likelihood values obtained in Equation (13)  
for the SDE-GB and ODE model, respectively. D is χ2(f) distributed, where f is the difference in number of parameters 
between the two models—in this case, f = 1.

Step 4: The model found in step 3 was extended by repeating the procedure in step 2. This time, yet another diffusion 
term was estimated. Hereby, the procedure was repeated five times. The best model now including two nonzero diffusion 
terms was identified with a likelihood-ratio test against the best SDE-GB identified in step 3. Analysis showed  
that it was not feasible to estimate more than two diffusion terms in the IVP model, given the limited size of each  
data set.

Step 5: In order to illustrate another method for systematic model improvement, we performed parameter tracking to 
pinpoint model deficiencies.8 Parameter tracking can be used to identify parameters with systematic variation due to  
factors or disturbances not included in the model, e.g., changing hormone levels or other unknown factors influencing 

T
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the system. By changing the parameter of interest into a state and by setting the drift term to zero, the parameter is 
allowed to vary as a random walk as dictated by the data. This will reveal any presence of a systematic structure that 
can be included in the model subsequently.

Results

Model Evaluation
The performance of the models is evaluated from the likelihood-ratio tests and by examining the one-step predictions 
and the autocorrelation function (ACF) for the standardized residuals. One step corresponds to the time between two 
samples. The ACF of the residuals shows whether the residuals are correlated.9,17 The standard deviations given in the 
following figures are equal to √diag(Rk|k–1).

A one-step prediction of the BG level from the ODE model and the ACF for the YSI residuals are seen in Figure 2.  
The one-step prediction is inaccurate, and especially after the bolus at 150 min, the predictions clearly deviate from 
the observations. The ACF shows that the YSI residuals are highly correlated and thus cannot be considered as 
independent. The same holds for the three other patients. The prediction of the insulin level from the ODE model and 
the corresponding ACF for the insulin residuals are shown in Figure 3 for patient 1. The prediction seems acceptable, 
although the limited number of observations (n = 23) makes it hard to assess. Based on the corresponding ACF,  
the residuals appear to be correlated. The next step in the model development was to estimate the model parameters, 
including one nonzero diffusion term. Table 3 shows the results from the likelihood-ratio test performed in steps 3 
and 4. As seen from the six likelihood-ratio tests in step 3, we found that the largest improvement was achieved with  
a nonzero diffusion term on the PD effect of insulin on the BG level, Ieff in Equations (5) and (6).

Figure 3. (Top) One-step prediction and 95% prediction interval  
from the ODE model and observations of the insulin plasma level for 
patient 1. The prediction is acceptable. (Bottom) The ACF for the 
insulin residuals from the ODE model. Despite the acceptable fit, the 
residuals are correlated.

Figure 2. (Top) One-step prediction and 95% prediction interval from 
the ODE model and YSI observations for patient 2. The starting time 
of each event is indicated by 1, 2, and 3. The prediction is not in 
total agreement with the observations, particularly after the bolus at  
150 min. (Bottom) The ACF for the YSI residuals from the ODE model. 
The sketched 95% confidence interval corresponds to an uncorrelated 
process. If more than 5% is outside this region, the process cannot be 
assumed to be uncorrelated. The residuals are strongly correlated in 
this case.

In the following, we define this model as SDE-GB 1. 
The one-step prediction of the BG level from SDE-GB 1  
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Figure 4. (Top) One-step prediction and 95% prediction interval 
from the SDE-GB 1 and YSI observations for patient 4. The prediction 
has improved from the ODE model prediction. The starting time of 
each event is indicated by 1, 2, and 3. (Bottom) The ACF for the YSI 
residuals from the SDE-GB 1. Almost no significant correlation is left.

for patient 4 is seen in Figure 4. The prediction has 
improved markedly, and the prediction uncertainty has 
also decreased substantially.

The ACF for the YSI residuals in Figure 4 shows that the 
residuals now can be considered as almost independent 
only by the inclusion of a single nonzero diffusion term 
in the state representing Ieff in Equations (5) and (6). 
Subsequently, SDE-GB 1 was extended as described in 
step 4. From the sequence of likelihood-ratio tests, we 
concluded that the largest improvement was achieved 
with an additional nonzero diffusion term on the state 
describing the insulin plasma level, Ip in Equations (3) 
and (4) as stated in Table 3. This model is named SDE-
GB 2 and includes two nonzero diffusion terms in total. 
Based on the individual likelihood values (for each data 
set) found in Equation (13), we saw that the obtained 
likelihood value had improved significantly only for 
patients 1 and 2. Thus we consider this model only for 
these two patients.

To illustrate the effect of the additional diffusion term, 
Figure 5 shows the one-step prediction of the insulin 
level from SDE-GB 1 and the ACF for the residuals for 

Figure 5. (Top) One-step prediction and 95% prediction interval from 
SDE-GB 1 and observations of the insulin plasma level for patient 1. 
The prediction is acceptable. (Bottom) The ACF for the insulin residuals 
from SDE-GB 1. Some correlation is still present.

Table 3.
Estimated Log-Likelihood Values and  
Test Statistics and P Values from the Likelihood-
Ratio Tests

log(∑L) Da P valueb

ODE model -510.3 — —

SDE-GB σIp -494.0 32.6 1.13 × 10-8

SDE-GB σIsc -494.3 32 1.54 × 10-8

SDE-GB σIeff -326.9 366.8 0

SDE-GB σG -357.7 305.2 0

SDE-GB σD1 -331.1 358.4 0

SDE-GB σD2 -337.1 346.4 0

SDE-GB σIeff+σIp -319.9 14 0.00018

SDE-GB σIeff+σIsc -324.6 4.6 0.032

SDE-GB σIeff+σG -326.9 0 1

SDE-GB σIeff+σD1 -326.9 0 1

SDE-GB σIeff+σD2 -326.9 0 1
a The test statistic D is computed from Equation (14) as the 

likelihood ratio between the ODE model and the following six 
models in the table (SDE-GB σIp-D2), and between SDE-GB σIeff 
and final five models in the tables (SDE-GB σIeff+Ip-Ieff+D2).

b Based on a χ2(1) distribution.
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patient 1. The ACF has improved from the ODE model, but some correlation is still present. Figure 6 shows the one-
step prediction of the insulin level from SDE-GB 2 together with the ACF for the residuals. The extra nonzero diffusion 

Figure 7. A result of parameter tracking. The one-step prediction and 
95% prediction interval of the peak time of the meal absorption shows 
that the peak time is shorter for the liquid meal than the solid meal 
as expected.

Figure 6. (Top) One-step prediction and 95% prediction interval from 
SDE-GB 2 and observations of the insulin plasma level for patient 1.  
The prediction has improved from the ODE model and SDE-GB 1.  
(Bottom) The ACF for the insulin residuals from SDE-GB 2. No significant 
correlation is left.

term removes the correlation between the residuals.

Parameter tracking
Kanderian and coauthors3 introduced intraday variation 
by separating data in time windows and estimating 
some of the parameters within these windows. The time 
windows are found on the basis of subjective predefined 
criteria for the model fit. Using the SDE-GB approach, 
we do not need to define such criteria to be able to 
investigate parameter variation. By changing a parameter 
into a state, we allow the parameter to vary over time. 
We can then track the variation in the parameter value.

As the patients are served two types of meals (solid and  
liquid), we would expect the peak time of meal absorption, 
τm, to differ for the two meals. We expanded SDE-GB 1 
by adding a state representing τm. The state was modeled 
as a random walk:

dtm = stmdw7                        (15)

With this formulation, we could track τm and identify the 
possible factors affecting the variation of this parameter.  
In Figure 7, a result of this tracking is seen. As expected, 
τm is estimated to be shorter after a liquid snack than 
after a solid meal. A future step would be to replace the 
random walk with an equation including meal type as 
the explanatory variable. We were not able to do this 
due to the limited size of the data sets. However, another 
case using parameter tracking for model expansion is 
presented elsewhere.8

Discussion
In this article, a systematic approach for formulating 
SDE-based glucoregulatory  grey-box models has been 
described. Using an ODE-based model as basis, the 
approach consists of a sequential method for obtaining a 
statistical validated SDE-based model. The steps include 
identification of the needed diffusion terms from a 
combination of forward selection, model testing, and 
model validation. The final model provides a robust and 
validated description of the data and provides much more 
accurate and realistic predictions.

We have focused on short-term prediction, which is relevant if the model is to be used for prediction in model 
predictive control of T1DM. In this case, the prediction is updated every time a new observation is available and 
cannot drift far away. SDE-GBs will be superior to ODE models for pure simulation as well, although this requires a 
careful investigation of the diffusion, which is out of the scope of this article.18
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The fact that the diffusion term was found to be significant for the state describing the PD effect of insulin on the BG 
level could indicate that the drift term of this part of the model is too simple to explain the true physiological relation.  
It might, however, also indicate that this part of the system is exposed to true physiological variation.

The advantages of SDE modeling are several. The most important is the possibility to use statistical tools for model 
selection and validation. Very few physiological systems, if any, contain states that can be predicted exactly. Since most 
statistical test principles rely on a full description (probabilistic distribution) of the future state values of the system, 
such statistical test procedures will lead to wrong conclusions about parameters and effects if they are based on an 
ODE model. The fact that SDE-GBs provide improved parameter estimates for models describing systems influenced by 
disturbances, i.e., nondeterministic states, has been shown elsewhere.19

Another advantage is the ability to pinpoint model deficiencies and to explore where and how to improve the model, 
as shown here with the peak time of meal absorption parameter τm. Parameter tracking with SDE-GBs is a strong tool in 
investigating how physiological variation influences the parameters of the models. This is recognized as the largest 
technical challenge in the development of simulation models.20 A systematic method for SDE-GB development is 
described by Kristensen and coauthors.7

The main disadvantage with SDE modeling is that it requires more complex estimation methods, which are not a 
part of standard modeling software tools. A full establishment of SDEs in diabetic modeling requires, first of all, an 
implementation of the estimation algorithms in commonly used software. Additionally, the computational burden is 
significantly larger for SDE-GBs, which puts demands on the researcher’s computer capacities. A first step toward fully 
recognizing the potential of SDE models is to use the ACF of the residuals as model validation as we have shown 
here. This is a fruitful way to test for independence.

The presence of the diffusion term in a state representing, e.g., a concentration can make the concentration drop below 
zero and thereby conflict with the physical understanding. To avoid this, a state-dependent diffusion term can be used  
to force the noise to decrease to zero when the concentration decreases to zero.10

To construct a reliable and robust virtual T1DM patient, the underlying model should not only represent an individual 
patient; it should ideally be a population SDE model based on clinical data from a large population. Population models 
include population parameters and random effects representing the intersubject variability in the parameter values.21,22 
This type of model has shown great potential within PK/PD modeling.9

Conclusion
The aim of this article was to use clinical data and an existing ODE model of a T1DM patient to illustrate the most 
important aspects and advantages of SDE-GB modeling. Data from four patients were used to estimate parameters in 
an ODE model and two SDE-GBs. Addition of a single diffusion term resulted in significant improvements in the ODE 
model in terms of predictions and prediction uncertainty. The ACF of the residuals confirmed that the SDE-GBs were 
statistically valid as opposed to the ODE model.

We have shown that SDE-GBs offer a solid framework for using statistical tools for model building and validation. 
Parameter tracking proved to be a useful tool to reveal the variation in the parameter describing the time to peak 
absorption of the meal. More reliable model predictions and the possibility to evaluate the uncertainty of the predictions  
as provided by the SDE-GBs will improve the reliability and potential of virtual T1DM patients.
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