
465

Model-Based Sensor-Augmented Pump Therapy

Benyamin Grosman, Ph.D., Gayane Voskanyan, Ph.D., Mikhail Loutseiko, B.S., Anirban Roy, Ph.D., 
Aloke Mehta, M.S., Natalie Kurtz, D.V.M., Neha Parikh, Ph.D., Francine R. Kaufman, M.D.,  

John J. Mastrototaro, Ph.D., and Barry Keenan, Ph.D.

Author Affiliation: Medtronic Minimed Inc., Northridge, California

Abbreviations: (BG) blood glucose, (BW) body weight, (CF) correction factor, (CGM) continuous glucose monitoring, (FDA) Food and Drug 
Administration, (I:C) insulin-to-carbohydrate ratio, (MDI) multiple daily injection, (SAP) sensor-augmented pump, (TDI) total daily insulin,  
(UVa) University of Virginia

Keywords: insulin therapy, model-based insulin therapy, sensor-augmented pump

Corresponding Author: Benyamin Grosman, Ph.D., Medtronic Minimed Inc., 18000 Devonshire St., Northridge, CA 91325; email address  
benyamin.grosman@medtronic.com

 Journal of Diabetes Science and Technology
 Volume 7, Issue 2, March 2013 
 © Diabetes Technology Society

Abstract

Background:
In insulin pump therapy, optimization of bolus and basal insulin dose settings is a challenge. We introduce a  
new algorithm that provides individualized basal rates and new carbohydrate ratio and correction factor 
recommendations. The algorithm utilizes a mathematical model of blood glucose (BG) as a function of 
carbohydrate intake and delivered insulin, which includes individualized parameters derived from sensor BG 
and insulin delivery data downloaded from a patient’s pump.

Methods:
A mathematical model of BG as a function of carbohydrate intake and delivered insulin was developed. 
The model includes fixed parameters and several individualized parameters derived from the subject’s BG 
measurements and pump data. Performance of the new algorithm was assessed using n = 4 diabetic canine 
experiments over a 32 h duration. In addition, 10 in silico adults from the University of Virginia/Padova type 1 
diabetes mellitus metabolic simulator were tested.

Results:
The percentage of time in glucose range 80–180 mg/dl was 86%, 85%, 61%, and 30% using model-based therapy  
and [78%, 100%] (brackets denote multiple experiments conducted under the same therapy and animal model), 
[75%, 67%], 47%, and 86% for the control experiments for dogs 1 to 4, respectively. The BG measurements 
obtained in the simulation using our individualized algorithm were in 61–231 mg/dl min–max envelope, 
whereas use of the simulator’s default treatment resulted in BG measurements 90–210 mg/dl min–max envelope.

Conclusions:
The study results demonstrate the potential of this method, which could serve as a platform for improving, 
facilitating, and standardizing insulin pump therapy based on a single download of data.
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Introduction

Studies indicate that adult subjects with type 1 diabetes using a sensor-augmented pump (SAP) have lower 
hemoglobin A1c values than subjects undergoing multiple daily injection (MDI) therapy. This is achieved without 
an increase in the number of hypoglycemic events.1 In the landmark STAR 3 study,2 the advantages of SAP therapy 
hemoglobin A1c reduction were demonstrated over the control group receiving MDIs. Subjects in the SAP group were 
more likely to meet age-specific hemoglobin A1c targets and had lower area under the glucose concentration-time 
curve values for hyperglycemia with no increased risk of hypoglycemia. Glucose variability improved in the SAP 
group compared with the MDI group. However, the application of evidence from research to individualized care still 
remains a clinical challenge.3

The basis of SAP therapy is to emulate the pancreatic beta cells’ functionality of insulin secretion. A small amount 
of basal insulin is constantly secreted by the pancreas to maintain euglycemia. However, during meals, additional 
insulin is secreted to compensate for the increase in blood glucose (BG). Similarly, with SAP therapy, basal insulin is 
continuously infused with boluses provided to compensate for the amount of food intake. Boluses can be delivered 
instantaneously or can be programmed to be delivered over a prolonged period of time. Optimal management of 
pump therapy patients requires knowledge of insulin pharmacodynamics and pharmacokinetics in order to accurately 
estimate insulin-to-carbohydrate ratio (I:C) and correction factor (CF), information that is not available for the majority  
of the SAP users.4

The ultimate goal of diabetes management is the development of the artificial pancreas with fully automated insulin 
delivery controlled by corresponding algorithms. In attempts to reach this goal, a few promising algorithms have 
already been published,5–13 with some of the algorithms showing significant potential in clinical trials.14–19 However, 
there is still a significant way to go before any of these algorithms could be commercialized where the general diabetes 
population could benefit. Safety still remains the main obstacle for performing fully closed-loop insulin delivery, and 
this is mainly attributed to sensor inaccuracy and failure. However, currently available SAP therapy can be further 
improved by optimization based on personal data derived from SAP. 

Currently, manufacturers of SAP systems do not provide estimates of either the basal insulin profiles or the I:C 
and CF. Physicians set up a basal pattern for each patient, and some use data from continuous glucose monitoring 
(CGM) devices. Consequently, the pattern and doses are adjusted to further improve the patient’s glucose profile.  
Traditionally, initial basal patterns for first-time pump users have been generated by applying the 1700/1900 “rule” or 
variation thereof.

Another common practice is to set the basal rates lower than needed and to compensate for the missing insulin 
through insulin boluses throughout the day. Health care professionals use a variety of heuristics in order to estimate 
a subject’s insulin therapy. For example, if a patient with a high basal/bolus insulin ratio demonstrates a tendency 
toward hyperglycemia, this would indicate that boluses were frequently missed, whereas frequent hypoglycemia may 
indicate a need for basal reevaluation.3

Typically, the clinicians’ first step is to estimate total daily insulin (TDI) requirements, which can be evaluated as a 
function of the subject’s body weight (BW).

TDI = c1 × BW,                                                              (1)

where BW and c1 are empirical, subject specific constants. The amount of insulin that is assumed to come from the 
basal rate is approximately 50% of the TDI requirement.20

A few publications have attempted to address the basal insulin adjustment issue. Palerm and coauthors21 introduced 
a recursive method, Wang and coauthors20 simulated an adaptive technique, and Miller and coauthors22 showed the 
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ability of a fuzzy logic learning algorithm to adapt basal insulin rates. All these algorithms can potentially succeed in 
adjusting insulin therapy. However, the main inherent drawback is the recursive need for multiple adjustments that 
may burden patients and physicians.

We believe in causality in glycemic response to insulin and meal intake. This causality can be translated into a 
mathematical model that is able to predict the BG response adequately enough to deduce conclusions about the insulin 
therapy. If a model could generate glucose profiles that were predictive for a specific individual, it might ultimately be 
used to adjust therapy for that same individual.23 Herein we introduce an algorithm that uses a subject’s past insulin  
and glucose data to individualize (calibrate) a mathematical model that is then used to optimize the subject’s basal 
profile, I:C, and CF.

The algorithm first uses suitable data sets to identify the insulin and meal parameters of the mathematical model. 
Later, based on the mathematical model predictions, the subject’s optimal insulin therapy is estimated.

In general, physiological mathematical models can be categorized as empirical, semi-empirical, or fundamental. 
The first two approaches are mainly used in the attempt to model the human glucose-to-insulin relationships. 
Empirical models capture the system behavior through input–output data; Finan and coauthors,24 for example, used  
autoregressive models.25 Semi-empirical models are based on simplification of the human glucose metabolism. One of 
the best known human glucose models is the minimal model of Bergman and coauthors,26 which simplifies the 
human glucose system into a minimal number of compartments to model insulin sensitivity and glucose effectiveness.  
More fundamental models will require a thorough understanding of glucose metabolism on subcellular, cellular,  
and tissue levels that are currently unavailable.

In this article, we first introduce the mathematical model formulation followed by the optimization method used for 
evaluating insulin therapy. Next, we present the experimental and simulation results that were conducted in order to 
evaluate our method.

Methods

The Mathematical Model
A mathematical model that enables individualization of a subject’s unique BG dynamics was formulated. The model 
describes the BG dynamics as a function of insulin and meal intake using three main compartments (Figure 1).  
It includes several unique features such as a biphasic meal model that is used to estimate the postprandial BG 
response that is superimposed on the BG response to insulin. The presented model was chosen for following reasons: 
it is linear, is physiologically based, and includes only parameters that have direct connection/understanding to 
measurable data (BG and insulin delivered).

The insulin pharmacokinetics is estimated by the Steil and coauthors27 study, and the pharmacodynamics are computed 
per subject.

It was observed that changes in glycemia after ingestion of a mixed meal remains above baseline for a longer period 
than predicted by the 120 min glycemic index.28 Therefore, the meal influence on BG is modeled as a BG biphasic 
time-delayed meal response. This is based on the assumption that food is digested in two delayed phases, which is 
manifested as a faster response near the meal intake followed by a second delayed response.

The following equation describes the subcutaneous insulin concentration as a function of the administrated insulin:

ÎD(s) = 
Îin

s
 (exp(-t1s) – exp(-t2s))                                                     (2)

where ÎD is the delivered insulin represented as a pulse between time t1 and t2 (min), Îin (U/h) is the insulin intake 
between time t1 and t2 (min), and s represents the complex argument of the Laplace transform.
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The pharmacokinetic model (Figure 1) that describes the plasma insulin’s (Ip) dynamics as a function of subcutaneous 
insulin and Ip initial conditions is described by Equation (3). This pharmacokinetic model was evaluated using in vivo 
data by Steil and coauthors:27

ÎP(s) = 1
(50s + 1)(70s + 1)

(ÎD + ÎP0sk1 + dIP0k2),

k1 = 3500; k2 = 120                                                           (3)

where ÎP is Ip in deviation form and ÎP0 and dIP0 are ÎP and derivative initial conditions, respectively.

All the insulin states are formulated in deviation form from given insulin value I0. In deviation form, I0 is subtracted 
from all the insulin states, and therefore, zero insulin in deviation form is equal to the absolute value of I0:

Îx = Ix – I0,                                                                (4)

where x represents the different insulin states D, in, or P.

The following equation expresses the glucose kinetic model (Figure 1) in deviation form:

Ĝ(s) = 1
(t1s + 1)·(t2s + 1)

⎛
⎜
⎝

KI · ÎP – 1
(50s + 1)(70s + 1)

 (Ĝ0 · a + (Ĝ0 · s + dĜ0) · b

+ (Ĝ0 · s2 + dĜ0 · s) c + (Ĝ0 · s3 + dĜ0 · s2) · d)

⎞
⎟
⎠
,                       (5)

a = 120 + t1 + t2
b = 3500 + 120t1 + 120t2 + t1t2
c = 3500t1 + 3500t2 + 120t1t2

d = 3500t1t2

where Ĝ, KI, Ĝ0, dG0, t1, and t2 are BG in deviation form, the insulin gain, the BG initial conditions in deviation form, 
the BG derivative initial conditions, and two time constants, respectively.

The following two equations describe the contribution of the biphasic meal response to the BG output:

Figure 1. The conceptual model of the glucose dynamics. The insulin pharmacodynamics is constructed by a known pharmacokinetics model  
and an individualized second-order part (shaded rectangular). The overall BG response is a superposition between the insulin and meal parts.
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M = 
Min

s (exp(-t1s) – exp(-t2s)),                                                      (6)

where Min is the meal intake in grams of carbohydrate per hour between time t1 and t2 (min),

GM(s) = 
KM1 · M

(tM1s + 1)2 · exp(-Dmeal1s) + 
KM2 · M

(tM2s + 1)2
 · exp(-Dmeal2s),                                 (7)

where GM (mg/dl) is the BG increment due to meal consumption, Dmeal1,2 (min) are time delays between the time of the 
meal intake and the time each meal hump starts to appear in the BG, KM1,2 are the meal response gains, and tM1,2 are 
time constants.

Final BG is calculated by

Gout = GM(t) + Ĝ(t) + Gout,0,                                                       (8)

where Gout,0 is the fasting BG (mg/dl) at a given insulin rate of I0. The mathematical model predicts that, if the given 
insulin rate I0 is delivered over a long fasting period, the resulting patient BG will be fasting BG.

Parameter Estimation
The mathematical model includes nine parameters that are estimated per subject (Table 1).

Table 1.
List of Mathematical Model Parameters that Are Identified per Subject

Parameter symbol Description Estimation method

KI Insulin gain (mg/dl per U/h) Modified 1800 “rule”

t1 Insulin time constant (min) Daily CGM data

t2 Insulin time constant (min) Daily CGM data

KM1 Meal gain (mg/dl per g carbohydrate/h) Daily CGM data

KM2 Meal gain (mg/dl per g carbohydrate/h) Daily CGM data

tM1 Meal time constant (min) Daily CGM data

tM2 Meal time constant (min) Daily CGM data

Dmeal1 Meal time delay (min) Daily CGM data

Dmeal2 Meal time delay (min) Daily CGM data

I0 Insulin reference value (U) Fasting data

Gout,0 Glucose reference value (mg/dl) Fasting data

Through the 1800 “rule,”29,30 the maximum drop in mg/dl for a unit bolus of rapid-acting insulin can be estimated as a 
function of the TDI. Using Equation (3), we can estimate that KI (Table 1) is approximately three times the drop of BG 
as evaluated by the 1800 “rule”:

KI = -3 · DpU1800,

DpU1800 = 1800
TDI

                                                              (9)

where DpU1800 is the drop in mg/dl per unit of insulin as it is predicted by the 1800 “rule.”

I0 and Gout,0 are estimated by data collected over a few fasting periods (normally night time). Next, we chose a few meal 
responses to estimate the remaining eight parameters: t1,2, KM1,2, tM1,2, and Dmeal1,2 [Equations (2)–(8)]. For each data set,  
in addition to the eight parameters, we also estimate Ĝ0 and dG0.
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The parametric estimation is conducted in two steps. First, a rough estimation is accomplished by using genetic 
algorithm.31 On the second step, the solution obtained by the genetic algorithm is used as an initial guess to a local 
solver (Matlab, Fminsearch).

The parametric optimization cost function is based on the root mean square error between the CGM values and model 
predicted BG:

S
k = n

k = 1
(CGMk – BGmodel,k)2

n
,                                                        (10)

where CGMk is the CGM at time instant k and BGmodel,k is the model BG prediction at sampling time k. 

The parametric optimization is conducted under the following constrains:

0 < t1,2 ≤ 150(min)

0 < tM1,2 ≤ 500(min)

0 < KM1,2 ≤ 100
⎛
⎜
⎝

mg/dl
gr·CHO/h

⎞
⎟
⎠
,                                                     (11)

0 < Dmeal1 < 10(min)
0 < Dmeal2 < 60(min)

Parameter ranges were selected in order to be realistic. The time constants represent the time it takes the system’s 
step response to reach ~63% of its final (asymptotic) value. The initial conditions are also bounded by assuming that a 
CGM has maximum absolute relative distance of 14%:

CGM(k) – G0(k)
CGM(k)

 ≤ 0.14.                                                       (12)

The derivatives of the initial conditions are bounded to be less than a change of 5 mg/dl/min, which is an estimation 
of the maximum physiological BG change:

dG0(k)
dt

 ≤ 5
⎛
⎜
⎝

mg/dl
min

⎞
⎟
⎠
.                                                         (13)

Optimizing the Insulin Therapy
We estimate the optimal basal that will bring a subject’s BG to 120 mg/dl (IBasal) by using the insulin gain (KI),  
the estimation of the Gout,0 , and its corresponding basal value (I0):

IBasal = 
⎛
⎜
⎝
I0 + 

120 – Gout,0

KI

⎞
⎟
⎠
.                                                        (14)

The meal insulin therapy is estimated by the minimization formulation shown in Equation (15). The minimization is 
using the model-predicted meal response to estimate the I:C, the CF, and the 6 h postprandial square bolus:

min
I:C,CR,SqB

Gpre<0
2 × 10 + Gpre≥0

2

insulin(k) = Meal
I:C

 + 
CGMk – 120

CF

subject to: I:C ∈[0,50]
CF ∈[1,inf]

insulin(k + 1 : k + 120) = SqB1 · Meal + IBasal,

insulin(k + 121 : k + 240) = SqB2 · Meal + IBasal

insulin(k + 241 : k + 360) = SqB3 · Meal + IBasal     (15)

subject to: 0 ≤ PPbasal1,2,3 ≤ 
basalmax

Meal
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where SqB1,2,3 are three values that produce the 6 h postprandial bolus when multiplied by the meal (g·CHO/h) and 
added to the IBasal. The maximum basal, basalmax, is set by default to 4 U/h.

The final insulin therapy is a superposition of the IBasal, the insulin bolus at the time of the meal intake, and the 
postprandial insulin bolus as illustrated in Figure 2.

Figure 2. A single bolus followed by a postprandial square bolus. IBasal 
is the optimal basal rate, and SqB is the postprandial bolus factor.

Dog Experiment
Six diabetic canines were chosen in order to estimate 
model parameters (two dogs were excluded in the 
early stage of the experiment). The dogs’ BG levels 
were measured over three 24 h periods during nominal 
insulin pump therapy that was set in advance by the 
veterinary facility personal and were used as the control 
group. The overnight insulin in the first control period 
was set to the nominal basal rate and to ±0.1 U/h of the 
nominal basal between 10:00 pm and 7:00 am in the other 
two control experiments. In the first control experiment, 
where no insulin therapy change was implemented at the  
overnight period, the blood samples were taken every 
hour. For the rest of the experiment (including the model-
based pump therapy), blood samples were taken every 
30 min. The four dogs’ glucose levels were controlled 
using the model-based pump therapy for 32 h from  
11:00 pm until 7:00 am two days after.

Simulations
Ten in silico adult subjects based on the Food and Drug Administration (FDA)-accepted University of Virginia  
(UVa)/Padova type 1 diabetes mellitus metabolic simulator32 were used to assess the optimization algorithm using 
insulin intake and CGM data incorporating actual characteristics of the Enlite™ glucose sensor,33 the latest in 
Medtronic glucose sensing technology, integrated with the glucose simulator. The identification data were generated 
by using a scenario of 60, 60, and 80 g carbohydrate meals given at 7:00 am, 12:00 pm, and 6:00 pm, respectively.  
Each subject’s simulation started at midnight of day 1 and ended at 8:00 am of day 2 (overall, 32 h of simulation).

In the next step, I:C, CF, SqB, and IBasal were adjusted by using the solely calibrated mathematical model, and only the 
final results were tested with the UVa/Padova simulator using three meals in the 24 h length scenario of 60, 60, and 80 g 
carbohydrate for meals provided at 7:00 am, 12:00 pm, and 6:00 pm, respectively.

Results

Table 2 summarizes experimental results for 24 h duration studies for four dogs from 6:00 am to 6:00 am. It can be 
seen that none of the canines under the model-based therapy reached BG values lower than 60 mg/dl. The percentage 
of time glucose was in the 80–180 mg/dl range was 86%, 85%, 61%, and 30% using model-based therapy and  
[78%, 100%] (brackets denote multiple experiments conducted under the same therapy and animal model), [75%, 67%], 
47%, and 86% for the control experiments for dogs 1 to 4, respectively. The BG at 6:00 am of the second day were  
110, 116, 166, and 170 using the model-based therapy and [88, 84], [101, 82], 74, and 100 for the control days for  
dogs 1 to 4, respectively. The TDI requirements were ~49, 49, 34, and 27 U for the model-based therapy and ~49, 47, 
26, and 24 U using the nominal therapy for dogs 1 to 4, respectively. The basal/bolus rations were ~51%, 49%, 40%, 
and 50% applying the model based-therapy and 65%, 61%, 63% and 57% using the nominal therapy for dogs 1 to 4, 
respectively. This percentage was calculated taking into account the postprandial square bolus as meal bolus after the 
overnight basal was subtracted.
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Table 2.
Twenty-Four-Hour Dog Experiment Summarya

Dog 1 Dog 2 Dog 3 Dog 4

Experiment C1b C2 C3 MT1 C1 C2 C3b MT1 MT2b C1b C2b C3 MT1 C1b C2 C3b MT1

Insulin therapy

Meal bolus (U) 5.1 4.1 6 7.5 4 4.7 5.4 6.2 6.5 3.7 5.3 4.3 8.1 2.8 2.3 2.6 6.2

Basel rate at

7–9 3.4 3.4 3.4 4.9 3.5 3.5 3.5 4.9 4.9 1.3 1.3 1.3 4.4 1 1 1 1.4

9–11 4 4 4 3.5 4 4 4 4.9 4.9 2.1 2.1 2.1 0.5 3 3 3 1.2

11–12 4 4 4 3.9 4 4 4 2.9 2.9 2.1 2.1 2.1 4.1 3 3 3 4.0

12–13 2.1 2.1 2.1 3.9 2.2 2.2 2.2 2.9 2.9 1.3 1.3 1.3 4.1 1.1 1.1 1.1 4.0

13–15 1.5 1.5 1.5 0.9 1.4 1.4 1.4 0.9 0.9 0.7 0.7 0.7 0.4 0.5 0.5 0.5 0.4

15–22 1.2 1.2 1.2 0.9 1.1 1.1 1.1 0.9 0.9 0.6 0.6 0.6 0.4 0.5 0.5 0.5 0.4

22–0 1.4 1.2 1.4 0.9 1.0 1.2 1.1 0.9 0.9 0.6 0.8 0.6 0.4 0.5 0.5 0.7 0.4

0–7 1.3 1.2 1.4 0.9 1.0 1.2 1.1 0.9 0.9 0.7 0.8 0.6 0.4 0.6 0.5 0.7 0.4

Daily basal total 44.2 43.1 44.9 40.8 40.7 42.5 41.6 41.6 41.6 21.9 23 21.2 25.2 21.8 21.1 22.9 20.4

Total daily dose 
(U) 49 47 51 49 45 47 47 48 49 26 28 26 34 25 24 25 27

CF (mg/dl/U) 35 31 31 57 56

I:C (13.2/U) 2 2 2 2 2

BG (mg/dl)

BG at 6:00 am 
first morning 92 82 134 155 92 114 124 94 100 110 161 130 222 98 87 98 80

BG at 6:00 
am second 
morning

84 88 84 110 101 82 71 116 123 65 58 74 166 99 100 71 170

Maximum BG 316 171 177 265 180 262 286 236 327 330 315 235 297 391 246 314 269

Minimum BG 84 66 84 60 72 63 71 61 92 65 58 63 117 98 80 65 60

Time at glucose level %

<60 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

<70 0 2 0 4 0 10 0 2 0 4 2 10 0 0 0 8 2

<80 0 22 0 8 24 22 20 10 0 8 2 31 0 0 0 10 2

80–140 52 71 71 76 59 51 32 75 31 36 12 37 24 32 78 24 16

140–180 16 6 29 10 14 18 20 10 22 16 22 10 37 24 8 20 14

180–250 8 0 0 4 2 6 16 4 16 24 31 22 20 20 14 20 57

>250 24 0 0 2 0 2 12 0 31 16 33 0 18 24 0 24 10

a 6:00 am to 6:00 am. C, control experiment; MT, model therapy.
b Data sets that are excluded from the final statistics



473

Model-Based Sensor-Augmented Pump Therapy Grosman

www.journalofdst.orgJ Diabetes Sci Technol Vol 7, Issue 2, March 2013

Table 3 summarizes the mathematical model parameters that were identified based on the experimental data. It 
can be seen that dog 1 is less sensitive to insulin, while dog 2 is relatively insulin resistant and also has the 
slowest pharmacodynamics—both t1 and t2 are 150 min (large values of time constants indicate on potentially 
slow pharmacokinetics). Dogs 3 and 4 have relatively higher sensitivity to insulin and faster pharmacodynamics— 
t2 approximately 0.1 min. All dog identifications included a second meal hump delay response between 223 and  
300 min, which indicates a very slow digestion for these specific dogs; however, this is specific to these dogs and does 
not apply to other dogs or to humans.

Figures 3 to 6 depict the 24 h experimental results for dogs 1–4, respectively. All dogs were provided with 13.2 
oz. of canned dog food mixed with dog kibble (the amount of kibble is set per dog). The BG, the insulin delivered  
(in logarithmic scale), and the meal intake are shown in subplots (A) to (C), respectively. The brown, blue, and 
black curves are the model-based therapy experiment, the model-based therapy predicted outcome, and the control 
experimental days, respectively. The grey curves indicate outliers that were taken from the final statistics.

Figure 7 shows the control variability grid analysis34 plot that compares the model-based therapy and the simulator’s 
default treatment algorithm, blue circles and pink rectangles, respectively, using a 10 adult population of the  

Table 3.
Summary of the Mathematical Model Parameters 
that Were Identified per Dog

Dog 1 Dog 2 Dog 3 Dog 4

KI -110 -117 -204 -221

t1 150 150 150 150

t2 7 150 0.1 0.14

KM1 185 165 402 275

KM2 82 133 27 94

tM1 173 197 231 231

tM2 188 221 180 187

Dmeal1 2 0 0 1

Dmeal2 223 252 300 277

I0 1.2 1.0 0.7 0.58

Gout,0 88 108 68 82

UVa/Padova simulator with a meal scenario of 60, 60, and 
80 g carbohydrate meals given at 7:00 am, 12:00 pm, and 
6:00 pm, respectively. Both therapies for all virtual adult 
patients resulted in zone A and zone B.

Table 4 shows a comparison between the I:C and basal 
rates obtained by the model-based therapy compared 
with the simulator’s default treatment algorithm I:C and 
basal rates.

Discussion

Dog Experiment Results
Six diabetic dogs were chosen in order to estimate model-
based therapy algorithm parameters. Two dogs were later 
excluded from the experiment. One was emitting its meals, 
and therefore it was hard to estimate its meal intake, 
and the second was constantly removing the insulin 
pump catheter. All the dogs in at least one of the control 
experiments and in some of the model-based therapy 
experiments showed a significant rise in BG in the afternoon that sometimes lasted until midnight. This nonconsistent 
rise in BG can be a result of the dogs being taken for exercise, and although closely supervised, they might have 
eaten their own feces or temporarily disconnected the insulin pump catheter. We omitted control days 1, 1, 2, and 2 
for dogs 1 to 4, respectively. In retrospect, since we already estimated the dogs’ CF, we should have given the dogs a 
correction bolus when we noticed the unexplained rise in BG.

We repeated the model-based therapy for dog 2 because the personnel who were conducting the experiment decided 
to suspend insulin delivery for 10 min when BG reached 61 mg/dl. The experiment was resumed after 10 min and 
carried over to the second day’s breakfast, where we did not observe a fast postprandial drop in BG. However,  
we decided to repeat the experiment, and when the postprandial response was very good without any dangerous 
drops in BG, however, we experienced a sudden elevation in BG in the afternoon after the dog was taken to exercise, 
as was observed with some of the control experiment days. 

In retrospect, we probably should not have used the data sets that included the afternoon BG elevation in the identification 
procedure. This is especially noticeable for dogs 3 and 4, where the model predicts relatively high delayed meal 
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Figure 5. Dog 3: Three nominal therapy days, the model-based insulin 
therapy experiment result, and the theoretical model-predicted therapy 
(black, orange, and blue curves, respectively). The grey curves show 
the unexpected elevation in BG in two of the control days.

Figure 6. Dog 4: Three nominal therapy days, the model-based insulin 
therapy experiment result, and the theoretical model-predicted therapy 
(black, orange, and blue curves, respectively). The grey curves show 
the unexpected elevation in BG in two of the control days.

Figure 3. Dog 1: Three nominal therapy days, the model-based insulin 
therapy experiment result, and the theoretical model-predicted therapy 
(black, orange, and blue curves, respectively). The grey curve shows 
the unexpected elevation in BG in the first control day.

Figure 4. Dog 2: Three nominal therapy days, two model-based insulin  
therapy experiment results, and the theoretical model-predicted therapy 
(black, orange, and blue curves, respectively). The grey curves show 
the unexpected elevation in BG in one of the control days and one of 
the model-based therapy experiments.

responses in the afternoon as a result of using two of three control experiment days for training the model. Interestingly, 
the model-delayed meal hump for dog 4 predicts the experiment results for the model-based experiment in very good 
agreement. Three of the four experiments days with dog 4 ended with an afternoon BG rise, while one of the control 
days resulted in a relatively low BG profile over the most of the experiment, which made it hard to understand what the  
outliers are.

We demonstrated that, even with a less accurate mathematical model, the model-based therapy resulted in greater 
percentages of time spent at glucose levels of 80 to 180 mg/dl that are equally comparable to the nominal therapy for 
dog 1 and better for dogs 2 and 3. Dog 4 ended in an elevated BG, but it reached a lower maximum value (269 mg/dl) 
than two of the control periods that were omitted (391 and 314 mg/dl). The relatively elevated BG when the model-based 
therapy was applied for dog 4 may also arise from setting the basal rate at a too low level as a result of incorrectly 
evaluating the dog insulin sensitivity and BG.

We target our insulin therapy to 120 mg/dl, and the BG measured at 6:00 am after 31 h of model-based insulin therapy 
were 110, [116 123], 166, and 170 for dogs 1–4, respectively. However, dog 3 did reach the value of 126 mg/dl at 11:30 pm 
and stayed in the 131–117 mg/dl range until 2:00 am, when it started drifting to higher BG values. This study was a 
proof of concept, and many of the problems in the reported results were solved in the algorithm version used at the 
day of the publication.
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The model-based therapy resulted in unchanged TDI 
requirements for dogs 1 and 2 when compared with the 
nominal therapy. For dogs 3 and 4, the TDI requirements 
were increased by 31% and 12%, respectively. The model-
based therapy, in comparison with the nominal therapy, 
delivered more insulin to all dogs to compensate for the 
meals and less insulin for the basal.

Simulation Results
The algorithm was tested initially on the simulator in order  
to assess its ability in optimal conditions. The indication 
that it works in silico and under ideal conditions is 
the first step in testing it in more realistic conditions. 
The UVa/Padova simulator is designed with no meal 
intraindividual variability, and hence the use for multiple 
meals is nonrealistic.

The algorithm was tested with 10 in silico adult subjects 
using the UVa/Padova FDA-accepted simulator. The 
population response BG values using the algorithm and 
the simulator’s default treatment algorithm were in the 
71–236 mg/dl range and in the 90–210 mg/dl min–max 
envelope, with a median of 121 and 127 mg/dl and 
interquartile of 26 and 23 mg/dl, respectively. The 
percentage of time at glucose levels of 70 and 180 mg/dl 
were medians of 100% and 98% and interquartiles of 
2% and 6% for the simulator’s default treatment and the 
model-based algorithm, respectively. 

In order to test the robustness of the system to meal 
uncertainties, the simulations were repeated with 20% 
of overestimations and underestimations of the meal 
carbohydrate count. The population response BG values 
using 20% overestimations and underestimations of the 
meal carbohydrates were in the 57–229 mg/dl range and 
in the 86–242 mg/dl min–max envelope, with medians  
of 120 and 128 mg/dl and interquartiles of 23 and  
32 mg/dl, respectively. The percentage of time at glucose 
levels of 70 and 180 mg/dl were medians of 100% and 

Table 4.
Optimized Insulin-to-Carbohydrate Ratios, Basal 
Rates, and Correction Factors Compared with the 
Simulator’s Default Insulin-to-Carbohydrate Ratios 
and Basal Rates

Subject
I:C (g carbohydrate/U) Basal (U/h)

Simulator Pump therapy Simulator Therapy

1 10 7 1.2 1.4

2 8 9 1.4 1.5

3 9 11 1.4 1.7

4 16 31 0.9 1.1

5 5 6 1.2 1.5

6 10 28 1.7 1.9

7 22 23 1.4 1.5

8 13 17 1.2 1.3

9 5 5 1.2 1.5

10 5 5 1.0 1.4

Figure 7. Control variability grid analysis plot comparing the UVa/
Padova simulator’s default therapy and the model-based insulin therapy 
(pink rectangles and blue circles, respectively).

98% and interquartiles of 4% and 10% for the 20% overestimations and underestimations of the meal carbohydrate 
count, respectively. These results indicate of the robustness of the method to meal uncertainties, at least in the 
simulated studies. 

Continuous glucose monitoring data often include calibration errors and noisy measurements; however, the method 
we introduced is based on offline calculations that enable us to reduce calibration errors significantly by retrospective 
calibration as well as to reduce noisy data through filtering and by selecting less noisy data sets.

Our model-based algorithm was able to accurately predict and adjust the insulin therapy of all 10 in silico adult 
subjects by maintaining the BG levels at a safe glycemic zone. Only CGM with the Enlite sensor noise collected from 
the simulator was used for the offline mathematical model calibration and calculation of the insulin therapy, which 
is equivalent to using a single sensor download of data of a subject wearing a SAP to adjust his/her insulin therapy.
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Conclusions
We introduced a model-based insulin therapy algorithm that can serve as a platform to optimize basal insulin profiles, 
I:C, and CF based on data derived from a patient’s SAP. The model is designed for routine BG control and will not 
handle sudden BG excursions from infection, steroid intake, or starting a diet.

It should be noted that we compared our algorithm with two relatively successful insulin therapies; the dog insulin 
therapy was set by professional laboratory technicians who had a relatively long time to set and reset the dog insulin 
therapy, and the simulator’s default treatment was optimized by the inventors of the simulator, assuming they had 
access to all the equations in the simulator’s model. Nevertheless, our model-based therapy was comparable to them. 

We assume that, currently, a large number of insulin-dependent diabetes patients are given less than optimal insulin 
treatment, but even standardizing the SAP therapy has a merit per se. We can envision that, in the near future, 
diabetes patients around the world will be able to get effective insulin therapy by using a short period of SAP data. 
These recommendations can later be modified by the patient and his physician to further improve insulin therapy. 
This algorithm can be used in subjects who utilize SAP therapy regularly, as well as in SAP naïve subjects who will be 
put on a pump for a dedicated time in order to set their insulin therapy.

As it was manifested by the divergence in the experiment results, animal models provide a richer environment to 
test algorithms than computer simulations. The unexplained rise in BG in the afternoon occurred only in some of the 
experiments, with the same dog model having exactly the same food and exactly the same insulin treatment. This is 
part of the challenge when attempting to regulate BG in reality. 

Having accurate insulin pump settings is necessary for effective BG regulation. However, the subject’s awareness of 
possible changes in BG is still a crucial factor in regulating his/her BG, and this need has great influence on the 
individual’s lifestyle. In the near future we can expect that closed-loop algorithms that regulate insulin basal rates 
will be approved. This model or other model-based therapy will complement these algorithms.
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