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Abstract

Background:
Most closed-loop insulin delivery systems rely on model-based controllers to control the blood glucose (BG) level.  
Simple models of glucose metabolism, which allow easy design of the control law, are limited in their parametric 
identification from raw data. New control models and controllers issued from them are needed.

Methods:
A proportional integral derivative with double phase lead controller was proposed. Its design was based on 
a linearization of a new nonlinear control model of the glucose–insulin system in type 1 diabetes mellitus 
(T1DM) patients validated with the University of Virginia/Padova T1DM metabolic simulator. A 36 h scenario, 
including six unannounced meals, was tested in nine virtual adults. A previous trial database has been used 
to compare the performance of our controller with their previous results. The scenario was repeated 25 times 
for each adult in order to take continuous glucose monitoring noise into account. The primary outcome was the 
time BG levels were in target (70–180 mg/dl).

Results:
Blood glucose values were in the target range for 77% of the time and below 50 mg/dl and above 250 mg/dl 
for 0.8% and 0.3% of the time, respectively. The low blood glucose index and high blood glucose index were 
1.65 and 3.33, respectively. 

Conclusion:
The linear controller presented, based on the linearization of a new easily identifiable nonlinear model, achieves 
good glucose control with low exposure to hypoglycemia and hyperglycemia.
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Introduction

In the literature, many closed-loop control design techniques were tested in the case of blood glucose (BG) control 
[proportional integral derivative (PID), model predictive control (MPC), nonlinear MPC, H∞ control, fuzzy logic 
control].1–14 Most of the controllers are model based, thus needing a control model of the BG regulation system.15–17 
In this regard, simple linear models have been initially proposed,18–20 but they have shown insufficiencies to fairly 
represent its behavior.20 Taking into account nonlinear features, the more refined model of Bergman and coauthors21 
has evolved as a dominant model in the literature. This model can be quite appealing for control algorithms because of  
its simple form. Moreover, its identification can be achieved from data stemming from the glucose monitoring system 
and the insulin pump. However, some limitations in the parametric identification of this model have been underlined, 
leading to difficulties in its practical use.22,23 For instance, this model needs to fix basal values of insulin and glucose 
to be structurally identifiable, but these are not precisely known for type 1 diabetes patients (T1DM). Furthermore, 
it has been shown that this model does not capture long-term effects of insulin delivery.24 In this article, a short 
description of a new nonlinear control model easily identifiable from real patients’ data is proposed. Then a specific 
PID controller from a linearized version of the new proposed model has been developed, as PID controllers have been 
used to regulate BG level,13 and displayed an acceptable regulation of BG. This approach is classic in control theory, 
because local properties of a nonlinear model can be deduced from the properties of the associated linearized model.25

The organization of this article is as follows. We begin by a brief description of the nonlinear model and the synthesis 
of the controller. We then detail the experiment and the results of simulations from the publicly available version of the 
University of Virginia/Padova T1DM metabolic simulator using a scenario proposed by Cameron and coauthors.26 
Finally, the performances of our controller are compared with the controllers tested by Cameron and coauthors.26

Methods

Simulation Model of Type 1 Diabetes Mellitus Patients
The UVa/Padova T1DM metabolic simulator (UVa/Padova metabolic simulator)27,28 is approved by the Food and Drug 
Administration as an in silico model of diabetes29 for closed-loop algorithm preclinical tests. Yet only 10 adult subjects 
are included in the publicly available version of this software. They were the virtual subjects used to generate our 
experimental data for the identification process and to validate our controller.

Presentation of the New Nonlinear Control Model of the Glucose Metabolism
The minimal model of Bergman and coauthors21 imposes the knowledge of two parameters Gb (glucose basal value) 
and Ib (insulin basal value), corresponding to a particular steady state, to be structurally identifiable.30 For a nondiabetic 
subject, Ib represents the value of the insulin produced by the pancreas in steady state, and Gb is the measured glucose 
value associated. Therefore, they can be measured. In case of T1DM patients, they are unknown. Thus, in the design 
of this new model, we did not consider a model in variation around basal values, but we set instead a generic condition 
about equilibrium states.

This condition was built by studying a mathematical relation at equilibrium between the injected insulin and the 
measured glucose. The data necessary to determine this mathematical relationship were obtained from the 10 virtual 
adults of the UVa/Padova metabolic simulator. The form of this equilibrium curve is supposed to be continuous and 
decreasing from a glycemia maximum at 0 U insulin to a glycemia that converges to zero as the associated insulin 
value is getting higher. Equation (1) details the mathematical equation at equilibrium validated on 10 virtual adults:

Geq = 
kgo

P1exp(SIUeq)
                                                              (1)

This leads to the nonlinear form of our model.
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The model itself consists of three differential equations. The input is the insulin delivery rate and the output is the 
measured glycemia. The glucose coming from meals is considered as a disturbance. The form of Equation (2.1) is 
deduced from Equation (1) and is nonlinear. It represents the glucose compartment. Equations (2.2) and (2.3) model 
the diffusion of insulin by two first-order equations. More details about the synthesis of the model can be found 
elsewhere.31,32 The equations of the proposed new nonlinear model of the glucose metabolism are

Ġ(t) = –P1 exp(SIX2(t))G(t) + D(t) + kg0                                              (2.1)

Ẋ2(t) = –wi (X2(t) – X1(t))                                                      (2.2)

Ẋ1(t) = –wi (X1(t) – Ui(t))                                                      (2.3)

where Ui (pmol/min) is the injected insulin and D (mg/min) is the glucose issued from meals and considered as an 
unknown disturbance in this work. The variable G (mg/dl) denotes the glycemia. X2 and X1 (pmol/min) represent 
the insulin in distant compartments. The parameter wi (min-1) represents the reverse time constant associated with the 
diffusion of insulin in the organism. The parameter P1 (min-1) represents a gain on the joint action of the pair insulin–
glucose on glucose. The parameter SI (pmol/min) represents a gain on the action of insulin on glucose. The parameter 
kg0 (mg/(dl/min)) corresponds to the endogenous glucose production. The physiological meaning of these parameters 
implies that they are strictly positive. The only measured output of the system is G which corresponds to the  
BG values.

Design of the Proportional Integral Derivative with Double Phase Lead Controller
The objective of the controller is to maintain glycemia in the range 70–180 mg/dl to avoid both low (<50 mg/dl) and 
high (>250 mg/dl) levels, despite meal disturbances and measurement noises. A PID-type controller is considered to 
be robust to disturbances and is easy to implement from a linear or linearized model. The design of such a controller 
requires a particular set point, and an efficient regulation will imply to respect the defined control range. The control 
variable is the injected insulin. The controller will produce an output that varies proportionally to the error between 
the measured glycemia and its set point desired value (proportional action). It will react to the rate of change of this error 
occurring during a meal (derivative action). Eventually, a cancellation of the static error is expected so that glycemia 
stays in the normal range (integral action). The linearization of the new model around a set point and the design of 
the controller are described here.

Model Linearization
In the present approach, meals are considered as disturbances and then the input D is neglected in the control design 
process. The equilibrium state (G0, X20, X10) for a constant insulin input Ui0 is given by

X20 = X10 = Ui0                                                           (3.1)

G0 = 
kg0

P1exp(SIUi0)
                                                          (3.2)

Let g = G – G0, x2 = X2 – Ui0, x1 = X1 – Ui0, and u = Ui – Ui0, then the linearized model around this equilibrium point  
(G0, X20, X10, Ui0) is given by
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Since the state matrix is upper triangular, its eigenvalues are displayed on its diagonal. They are strictly negative, 
because the parameters of the model are strictly positive. The equilibrium state is thus exponentially stable. In the 
frequency domain, the following transfer function between u and g is obtained:
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H(p) = 
Km

(1 + T1p)(1 + T2p)2
                                                        (5)

where p denotes the symbolic Laplace variable.

The gain is defined by Km, and its value is given by (–SIG0). The time constants are defined by T1 and T2. T2 is equal to  
(1/wi), and T1 is equal to (G0/kg0). The values of T1 and Km depend on the linearization point.

Choice of the Type and Form of the Proportional Integral Derivative Controller
The system presents an instability risk in closed loop, because it is a third-order system. Thus we may expect from 
a proposed controller to increase the bandwidth while keeping the stability of the system. Several solutions can 
be proposed to answer this point. From an analysis of the form of transfer function of the system [Equation (5)],  
the simplest solution to decrease the instability risk in closed loop is to compensate the double-order pole linked to 
the time constant T2. As a consequence, a proportional integral derivative with double phase lead (PIDD) controller 
is proposed to ensure the feasibility of the controller. The transfer function of this controller, corresponding to an 
implementation in a series form, is given by

C(p) = KC
⎛
⎝
1 + 1

Tip
⎞
⎠
⎛
⎝

1 + Tdp
1 + aTdp

⎞
⎠

2
 with a < 1                                            (6)

Its factors correspond respectively to the proportional, integral, and derivative actions, the latter being filtered to reduce 
the noise sensitivity and to be physically implementable. The value of a was chosen equal to 0.1, which corresponds 
to a classical tuning value of this parameter.

Its structure, as detailed earlier, allows some poles of the system to be cancelled in the calculation of the controlled 
system open-loop transfer function by setting the time constants Ti = T1 and Td = T2. The resulting transfer function in 
open loop, denoted OL(p), is then given by

OL(p) = H(p)C(p) = 
KmKc

T1p(1 + aT2p)2
                                                 (7)

Tuning of the Controller 
Tuning of the proposed controller is constrained by intrinsic characteristics of the system and desired specifications. 
Indeed, the physical control variable has to be positive because it is the delivery rate of insulin. Such a constraint cannot 
be taken into account in the computation of the control, as it would be done in an optimization process since a PID 
provides an explicit expression of its output. As a result, a smooth control is required in order to maintain the system 
in the linearity zone. This can be ensured by specifying a sufficiently large phase margin for the controlled system.  
Let Dj be the desired phase margin, and the corresponding cutoff frequency should be

wc = 
tan⎛

⎝
90º – Dj

2
⎞
⎠

aT2
                                                            (8)

By setting ⎮OL(wc)⎮ = 1, this provides the value of the controller gain:

Kc = 
T1wc

Km
                                                                  (9)

Another constraint is that the measured glycemia is noisy. In the case of the UVa/Padova metabolic simulator, this 
noise signal is a low-frequency signal with a bandwidth equivalent to that of the noise-free measured glucose. To filter 
the noise, a very high value of the phase margin is chosen (Dj is 85° or 87.5°, depending on the insulin sensitivity of 
the patient).
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Implementation of the Controller 
The controller has been designed for a model in variation around the equilibrium point. So the actual insulin delivery 
corresponds to the sum of the controller output and the equilibrium control value (Ui0). In the implementation,  
the integral action was initialized at the insulin value corresponding to the linearization set point so that the output of 
the implemented controller is the total insulin delivery.

Tuning of the controller has been performed to minimize the risk of computing negative values of insulin delivery.  
Yet a saturation of this variable is mandatory to ensure its positivity in any case. Furthermore, a specific implementation 
of the integral action, as displayed in Figure 1, is performed to avoid the phenomenon of integral windup.  
The implementation of the controller is represented in Figure 1.

Figure 1. Implementation of the controller in the simulator.

Results

Identification of the Parameters of the Model 
The input was the injected insulin and the output was the noise-free BG values; no meal disturbance was considered 
in the scenario. The identification protocol used to obtain data was as follows:

• An open-loop scenario was applied, consisting of a basal insulin step (increase of its basal value), with a patient-
specific magnitude depending on the insulin sensitivity.

• The step magnitude was chosen by using available information from each subject (the maximum drop in mg/dl/U 
insulin and the basal insulin value) so that the BG values of the patient stay in their normal range (BG > 70 mg/dl).

• Twelve hours of data were considered, as the duration of the insulin action is lower than 6 h.

• The sampling time was that of the simulator (i.e., 1 min).

At the beginning of the experiment, the previous basal insulin values were supposed to be constant so that the model 
initial states could be supposed at steady states. The states of X1 and X2 were therefore considered equal to initial 
basal value (Ub), and the initial glucose value was fixed to the glucose value measured (Gb). From the data provided by 
this protocol, the identification toolbox of Matlab33 was used to obtain the four parameters of the new nonlinear model. 
The optimization algorithm “nonlinear least squares” was selected. An indicator of the goodness of the identified 
model is given by the fit function:
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Figure 2. Cross-validation results of the identified model of a virtual 
patient on another data set.

Fit = ⎛
⎝
1 – 

⎮⎮ y – ŷ⎮⎮
⎮⎮ y – y⎮⎮

⎞
⎠
  × 100%,

where y is the vector of measured glucose values, ŷ is 
the vector of glucose values estimated by the model, and   
y is the mean of the measured glucose values. The closer 
its value to 100%, the better the estimated model.

The mean fit obtained by our model on the 10 virtual 
patients is 99.5%, with a standard deviation of 0.5%.  
A cross validation using another noise-free scenario with-
out meal disturbance was performed. The new scenario 
consists of variations of basal values during one day.  
The mean fit obtained on the 10 virtual patients is 71.8%. 
Figure 2 represents a cross validation result for the 
virtual adult 3. This indicates that the new control model 
can provide a good approximation of the simulator 
model when considering BG values.

Testing the Proportional Integral Derivative with Double Phase Lead Controller
To compare the performances of the new PIDD controller with existing controllers, the Cameron and coauthors26 
scenario was used for the closed loop. According to this scenario, the 10 adult patients of the UVa/Padova metabolic 
simulator were simulated during 36 h. Six unannounced meals were planned, lasting 15 min each and respectively 
measuring 50 g carbohydrate (CHO) at 9:00 am, 70 g at 1:00 pm, 90 g at 5:30 pm, 25 g at 8:00 pm, 50 g at 9:00 am, and 
70 g at 1:00 pm. The glycemia was measured through the continuous glucose monitoring system. The controller used 
a sample time of 5 min. The glycemia set point value was 140 mg/dl. To take into account the effect of noise, the 
scenario was repeated 25 times for each patient. Just as Cameron and coauthors,26 we have excluded adult 9 from 
the average results. Indeed, they studied this adult and showed that the suppression of the endogenous glucose 
production of this virtual patient following a meal was still active after 6 h, which led to hypoglycemia after meals. 

Table 1.
Main Objectives Performance Measuresa

ID Mean BG 
(± SEM) 

%BG 
70–180

%BG 
< 50 (n)b

%BG 
> 250

%BG 
50–70

Adult 1 131 (±6) 72% 0.8% (4) 0% 11.8%

Adult 2 131 (±4) 89% 0%   (1) 0% 3.5%

Adult 3 148 (±4) 70% 0.3% (1) 0% 3.1%

Adult 4 133 (±5) 78% 0.3% (1) 2.4% 3%

Adult 5 125 (±5) 77% 1.8% (5) 0% 10.7%

Adult 6 135 (±6) 73% 0.8% (2) 0.1% 6.5%

Adult 7 141 (±4) 82% 0%  (0) 0% 0.6%

Adult 8 120 (±6) 95% 1.3% (3) 0% 2.7%

Adult 9  128 (±16) 55% 21.3% (25) 0% 3%

Adult 10 147 (±4) 57% 0.6% (3) 0% 12.2%

Average 
values 135 (±5) 77% 0.8% 0.3% 6%

a BG in mg/dl. SEM, standard error of the mean. 
b n refers to the number of the tests (among the 25 tests) with  
  BG < 50 mg/dl.

They then concluded that it was not representative of 
a normal diabetes patient and should be considered as 
an outlier. Furthermore, even with an optimal bolus 
correction associated with meals, this virtual patient is 
subject to hypoglycemia while other adults are not.

Table 1 provides the performance measures for the 10 adults 
and the average values for the 9 valid adults. The mean 
time within the target range (70–180 mg/dl) was 77%. 
Percentages of time in hypoglycemia (BG < 50 mg/dl) and  
hyperglycemia (BG > 250 mg/dl) were 0.8% and 0.3%, 
respectively. There was nearly no reading above 250 mg/dl  
(adult 4 and adult 6). As a result, both the means of 
low blood glucose index (LBGI) and high blood glucose 
index (HBGI)34 were low (Table 2), indicating that the 
controller minimized the risk of low and high glucose 
excursion.

Figure 3 shows the average values and the 95% and 70% 
confidence intervals of the BG values for the nine virtual 
patients. The analysis of this figure shows that the meal 
disturbances are rejected. We recall that the proposed 

–

–
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Table 2.
Performance Measures (Quality Indicators)

ID
Interquartile 

range 
(mg/dl)

LBGI HBGI
Premeal 

BG 
(mg/dl)

Postmeal 
BG 

(mg/dl)

Adult 1 65 2.64 3.09 138 172

Adult 2 67 1.28 2.50 139 165

Adult 3 58 1.08 4.68 151 188

Adult 4 65 1.25 3.52 128 200

Adult 5 63 2.71 2.35 130 172

Adult 6 81 1.80 3.67 142 185

Adult 7 60 0.44 3.47 145 183

Adult 8 46 1.45 1.21 122 148

Adult 10 92 2.17 5.48 154 202

Average 
 values 66 1.65 3.33 139 179

controller receives no information concerning the time 
and quantity of CHO in meals. Yet some patients suffer 
from hypoglycemia events during nighttime. It mostly 
concerns the patients for whom the duration of the meal 
action is higher than 4 h, which is the time between two 
meals. Furthermore, no upper limit on the maximum 
quantity of injected insulin was considered in this case. 
Thus adding a safety system limiting the daily insulin dose 
to the controller would improve the presented results.

Discussion
The PIDD controller, based on a linearization of our 
new nonlinear model, achieves satisfactory glycemic 
regulation in a group of virtual adult T1DM patients 
from the UVa/Padova metabolic simulator. To compare 
the performances with those of other controllers, we 
chose to use the same scenario and experimental 
conditions as Cameron and coauthors.26 They developed 
a novel “extended model predictive controller” (EMPC) 
with a modified cost function to take into account the 
uncertainty of the prediction in the future BG values 
and to minimize the combined risk of hypoglycemia 
and hyperglycemia. They demonstrated the improved 
performance of EMPC against a PID controller and a 
basic MPC controller. The PID controller was actually 
a proportional derivative controller. The weights for 
proportional and derivative terms were optimized to 
minimize the average BG risk index (LBGI + HBGI).  
The MPC controller used a prediction horizon of 300 min  
and a specific prediction algorithm to detect and to 
estimate the meals. The performance comparisons (adult 
9 excluded) of the controllers are summarized Table 3.  
The time spent with glucose levels in target range  
(70–180 mg/dl) and the hyperglycemic range are not 
different between MPC (79.6% and 19.9%, respectively) 
and PIDD (77% and 16%, respectively). Severe hypo-
glycemic events are similar, whereas minor hypo-

Figure 3. Average control performance and confidence intervals for 
the nine virtual patients. The first confidence interval is at ±σ (70%)   
and the second one at ±1.96σ (95%). The lower graph indicates the 
time of the meals and quantities of CHO ingested each minute (the 
duration of the meals is 15 min).

Table 3.
Performance Indicators of the Different Controllers (Blood Glucose in mg/dl)

Algorithm Mean BG Interquartile 
range

%BG 
70–180 %BG < 50 %BG 

50–70 %BG > 250 %BG 
180–250

PIDD 135 
(standard deviation ± 10) 66 77% 

(±13%)
0.8% 
(±3%)

6% 
(±5.8%)

0.3% 
(±0.9%)

16% 
(±9%)

PID 156 54.9 72.6% 0% 0% 0.6% 26.8%

MPC 151 54.8 79.6% 0% 0.2% 0.3% 19.9%

EMPC 147 45.0 84.3% 0% 0.7% 0% 15%

glycemic readings are more frequent with the PIDD controller (6% versus 0.2%). In our simulation, the sensor noise was 
taken into account by repeating the scenario 25 times. Such a process allows the robustness to noise to be evaluated. 
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In a noise-free case, there are no events of hypoglycemia, as the minimum glycemia measured is 69.55 mg/dl. Furthermore, 
in the simulator, the implemented noise has a positive mean, which explains the incidence of hypoglycemia. 

The results of the controllers from Cameron and coauthors26 are better than ours in terms of hypoglycemic events. 
However, they ran their scenario only one time, which questions the use of noisy sensor measurements. In Table 1,  
we indicate the number of tests (among the 25 scenarios) with severe hypoglycemia events. The maximum number 
of this instance is five for adult 5. Furthermore, in the implementation of our controller, no upper limit on the 
injected insulin was considered, but Cameron and coauthors26 had used a fixed limit. Thus, our presented results are  
more robust. 

Finally, as compared with MPC, our PIDD controller is more easily implementable. The design of the controller is 
straightforward once the parameters of the model are identified. Furthermore, such controllers are particularly robust 
without meal announcement.

Conclusion
In this article, a PIDD controller based on a linearization of a new nonlinear control model was proposed. In comparison 
to previously published results of PID and MPC controllers,21 our PIDD controller achieves good regulation 
performance. Its performance indicators are quite similar to those of the MPC controller, with the benefit of a simpler 
implementation. The results obtained are better than previously proposed PID controllers, even though we considered 
a less constrained case (noise effect and no upper limit on injected insulin). Then, even if the controller exhibits some 
severe hypoglycemia events, considering a safety limit on the total injected insulin dose would improve the results as 
well as working on a better adjustment of the controller gain. The identification process is subject to further research  
to consider data obtained from a continuous glucose monitoring sensor. The range of data used in the identification 
process should be larger to take into account the noise and should include meal data. Consequently, we are currently 
working to add a model of diffusion of the ingested glucose in the new nonlinear model to address this issue.
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