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Abstract

Background:
Tissue response to indwelling glucose sensors remains a confounding barrier to clinical application. While the 
effects of fully formed capsular tissue on sensor response have been studied, little has been done to understand 
how tissue interactions occurring before capsule formation hinder sensor performance. Upon insertion in 
subcutaneous tissue, the sensor is initially exposed to blood, blood borne constituents, and interstitial fluid. 
Using human whole blood as a simple ex vivo experimental system, the effects of protein accumulation at the 
sensor surface (biofouling effects) and cellular consumption of glucose in both the biofouling layer and in the 
bulk (metabolic effects) on sensor response were assessed.

Methods:
Medtronic MiniMed SofSensor glucose sensors were incubated in whole blood, plasma-diluted whole blood, 
and cell-free platelet-poor plasma (PPP) to analyze the impact of different blood constituents on sensor function. 
Experimental conditions were then simulated using MATLAB to predict the relative impacts of biofouling and 
metabolic effects on the observed sensor responses.

Results:
Protein biofouling in PPP in both the experiments and the simulations was found to have no interfering effect 
upon sensor response. Experimental results obtained with whole and dilute blood showed that the sensor 
response was markedly affected by blood borne glucose-consuming cells accumulated in the biofouling layer 
and in the surrounding bulk.

Conclusions:
The physical barrier to glucose transport presented by protein biofouling does not hinder glucose movement to 
the sensor surface, and the consumption of glucose by inflammatory cells, and not erythrocytes, proximal to the 
sensor surface has a substantial effect on sensor response and may be the main culprit for anomalous sensor 
behavior immediately following implantation.
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Introduction

The most prevalent sensor configurations used in glucose monitoring are transcutaneous systems that measure 
subcutaneous interstitial glucose.1 In order to bring a mechanistic description to sensor behavior in subcutaneous 
tissue, we previously presented a computational transport model to elucidate the effects that constituent parts of fully 
formed capsular tissue have upon a transcutaneous sensor’s ability to measure glucose values accurately in real time.2 
However, a more complete understanding of the effects of tissue interactions on sensor function should also include 
events that occur prior to mature capsule formation. Clinically, this time frame is of particular importance because 
it coincides with the 3–7 day windows of Food and Drug Administration approval for all commercially available 
continuous glucose monitoring systems.3–6 

At insertion, these sensors are rapidly exposed to blood, blood borne constituents, and interstitial fluid from cut 
vasculature, and the sensor surface becomes fouled with a layer of blood plasma proteins and adhered blood borne 
cells. Sensor fouling is the first step in the foreign body response, and the following tissue reaction has been posited 
to decrease glucose concentration near the sensor over time, as well as limit the diffusion of interstitial glucose to 
the sensor.7–9 Prichard and coauthors10 have previously shown that interstitial glucose concentrations decrease around 
implanted tissue, yet the exact cause of this depletion in early stage tissue reaction is not known.

It has been suggested that protein adsorption and cell adhesion serve as diffusive and consumptive barriers to glucose 
transport.11 Klueh and coauthors11 reported a series of experiments using sensors from both Abbott Diabetes Care and 
DexCom that examined this interaction by immersing transcutaneous sensors in unheparinized and heparinized 
whole blood. All of the sensors exhibited a temporal decay in glucose signal, which they attributed to glucose 
consumption by erythrocytes accumulated at the sensor surface.11 This group also conducted in vivo studies on the 
role of erythrocyte-embedded clots on sensor function in mice.12 

Similar to Klueh and coauthors,11,12 in the current study, the effects of protein biofouling and cellular accumulation 
on glucose concentration near a sensor were observed experimentally by recording the changes in response of 
commercially available Medtronic MiniMed SofSensors in heparinized whole blood and various blood constituents. 
Numerical simulations were then used to further predict mechanistic scenarios that could be used to explain the 
experimental observations. Our simulations support the conclusion that cellular glucose consumption, not transport 
resistance due to biofouling, limits glucose concentration near a sensor. 

Materials and Methods

Sample Preparation for Whole Blood and Blood Constituent Study
As described in the Appendix, blood constituent samples were obtained and prepared through the fractionation of 
blood via centrifugation using an existing protocol to gather platelet-poor plasma (PPP) for studies.13,14 

Whole Blood and Platelet-Poor Plasma Studies
All sensors were “precalibrated” as described in the Appendix. Once a baseline was obtained, the sensors were 
transferred from the phosphate-buffered saline (PBS) bath to one of two 10 ml samples of either gently stirred whole 
blood or PPP at 37 °C. This incubation was carried out until a baseline was formed, which took approximately 10 h. 
Raw current values were wirelessly transmitted from the sensor to a computer via a proprietary data acquisition 
program provided by the Medtronic Corporation. During the 10 h incubation, blood and PPP glucose concentrations 
were measured via test strips to ensure that the sensors were accurately recording trends in each test group. During the 
10 h incubation, blood and PPP glucose concentrations were measured periodically via test strips (OneTouch Ultra, 
Johnson & Johnson, Milpitas, CA) to ensure that the sensors were accurately recording trends in each test group. 
To examine whether blood and PPP allow sensors to behave in a stepwise, nonreactive fashion like PBS, glucose 
incursions were made to double the glucose in the system. Sensors were then allowed to gather a baseline over 6 h, 
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and the process was repeated. Test strip measurements were made at the beginning and the end of each incursion to 
see if sensor response mimicked a direct blood glucose concentration measurement. After the blood incubation, both 
sensors were “postcalibrated” in a stirred PBS bath at 37 °C using the same process as the precalibration. This study 
was repeated three times (n = 3).

Whole and Dilute Blood Study
To examine the effect of cell number and consumption upon sensor readings, sensors were immersed in both whole 
and dilute blood. After the same PBS calibration step described in Whole Blood and Platelet-Poor Plasma studies, 
two sensors were submerged in one of two test solutions. The first solution was heparinized whole blood prepared 
as described in samPle PreParation for Whole Blood and Blood Constituent study. The second solution was blood 
diluted 1:11 in its own PPP, which should not dilute the glucose concentration of the sample while diluting the cell 
concentration. The sensor treatment protocol followed the same layout as detailed in Whole Blood and Platelet-Poor 
Plasma studies. This study was repeated three times (n = 3).

Data Collection, Calibration, and Statistical Analysis
All sensor signals were sorted and plotted using MATLAB (The Mathworks, Natick, MA). Calibration curves were 
calculated as a linear fit by using the “polyfit” command in MATLAB. Analysis of covariance (ANCOVA) was performed 
in MATLAB to assess significant differences in the slopes of the linear portions of the sensor signal during incubation 
in different blood constituents (p < .05).

Modeling of Cellular Glucose Consumption
To complement experimental findings, a numerical simulation of the experimental setup was derived and implemented 
using MATLAB. Figure 1 presents a schematic representation of the model used in this study, which was modified 
from the model presented in a previous article by this group.2 Briefly, transport of glucose through the environment 
surrounding the sensor was treated as a two-compartment construct. The first compartment, the one closer to the 
sensor with respect to distance, was the biofouling layer (Clayer), a thin layer of proteins and adherent/entrapped cells 
that forms in within minutes of blood exposure. The second compartment (Cbulk) was the bulk blood surrounding the 
sensor and its biofouling layer. Values for all constants are defined in Table 1. Model specifics as well as initial and 
boundary conditions are described in the Appendix.

Table 1.
List of All Baseline Model Parameters

Model parameters
Parameter values

Biofouling layer Bulk blood Reference

Diffusion coefficient (D) (cm2/s) 1.87 × 10-6 3.5 × 10-6 2

Porosity (ε) (unitless) 0.91 0.55 a

Layer thickness (L) (µm) 75 — 2

Michaelis–Menten constant (KM) (µM) 6.13 ×103 4 × 103 15,16

Maximal rate of cellular glucose uptake (Vmax) (µmol/cell/s) 4.88 × 10-11/1.357 × 10-12 1.357 × 10-12 15,16

Permeability of biofouling layer (Player) (cm/s) 5 × 10-3 — b

Conversion constant (λ) (mol/mM/s) 2.574 × 10-14 — 2

Cell volume (zcell) (liter/cell) 9.5 × 10-13 — 2

Glucose sensor radius (a) (cm) 0.07 — 2

Sensor surface area (A) (cm2) 0.0058 — 2
a Calculated values with no previous citation.
b Model assumptions.
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Glucose uptake was considered an enzymatically mediated event and was thus modeled using Michaelis–Menten 
kinetics.2 These simulations assumed that the glucose-consuming cells in the biofouling layer were, depending on the 
scenario, either inflammatory cells or erythrocytes, while the cells in the bulk were erythrocytes. Thus the Vmax,bulk 
was set to 1.36 × 10-12 µmol/cell/s, the reported value of maximal glucose consumption rate for human erythrocytes,  
as reported by Yang and coauthors.15 The baseline Vmax,layer value used for these calculations was either 4.88 ×  
10-11 µmol/cell/s as reported by Ahmed and coauthors16 for glucose uptake by human macrophages during inflammation  

Table 2.
Outline of Five Different Computational Scenarios 
for Glucose Transport to an Indwelling Sensora

Biofouling layer cell type Bulk blood cell type

Scenario 1 Macrophage Erythrocyte

Scenario 2 Macrophage None

Scenario 3 None Erythrocyte

Scenario 4 Erythrocyte Erythrocyte

Scenario 5 Erythrocyte None
a To represent these changes in cell type, the Michaelis–Menten 

kinetic values of Vmax and Km were changed accordingly.

Figure 1. Schematic representation of diffusion through bulk blood and a layer of adsorbed proteins and cells.

or the erythrocyte value reported by Yang and coauthors.15 
The Vmax of the inflammatory cell was chosen to be 
that of a macrophage, but it is worth noting that other 
leukocytes such as lymphocytes and neutrophils have 
similar glucose uptake kinetics.17,18 

Five computational scenarios (Table 2) were examined to 
compare the effect of glucose consumption by different 
cell types (inflammatory cell or erythrocyte) within 
the biofouling layer and the bulk blood. The results of 
these simulations were then compared directly to two 
experimentally measured normalized sensor signals in 
whole blood from Figure 3 (the maximal decline following 
addition of the sensor and the minimal decline after a 
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glucose addition to show a range of declines) to find which cell type had the dominant effect on decreased sensor 
signals. To investigate the ability for the proteins within the biofouling layer to act alone as a diffusive barrier for 
glucose transport to the sensor surface, the simulation was run with both Vmax,layer and Vmax,bulk set to zero, creating an 
in silico analog to the PPP s tudies.

Modeling Biofouling Layer Glucose Depletion Zone Formation
To investigate the spatial effect of inflammatory cell aggregation and glucose consumption on sensor readings, glucose 
concentration profiles were plotted with respect to distance for different values of Vmax,layer. The maximal glucose 
uptake rate of the cells in the layer (Vmax,layer) was varied among four different values: (1) Vmax = 0, representative of  
only an acellular protein biofouling layer; (2) Vmax for erythrocytes; (3) Vmax for macrophages; and (4) twice the Vmax for 
macrophages. The last case was considered to assess the possible effect of increased cellular accumulation at the 
sensor interface.

Numerical Methods
Governing partial differential equations in the simulations were discretized into a series of ordinary differential 
equations using the finite difference method. Differential equations from all earlier studies were solved using the 
differential equation solver, ode15s, in MATLAB.

Scanning Electron Microscope Imaging of Sensor Surface
The protocol for scanning electron microscope (SEM) was modified from Nurdin and coauthors19 and is described in 
the Appendix.

Results

Whole Blood, Dilute Blood, and Platelet-Poor Plasma Studies
Figure 2 shows the reproducibility of results from submerging sensors in whole blood. For both trials, signals initially 
declined upon immersion in whole blood. Moreover, when glucose is added to the system, the signal does not maintain 
a step increase like in the precalibration immersion in glucose-spiked PBS. Postcalibration steps verified that sensor 
functionality was maintained throughout the course of the immersion. This anomalous response in whole blood 
spurred further experiments where sensors were immersed in different blood constituents. 

Figure 2. Incubation of Medtronic MiniMed sensors in whole blood.

Figure 3 shows mean continuous glucose sensor measure-
ments in whole blood (blue solid trace), PPP (red solid 
trace), and dilute blood (black solid trace) derived from 
the same stock of whole blood, as well as discrete glucose  
concentrations sampled by test strips for each (open 
circles). After precalibration, one sensor was immersed 
in PPP and the other was immersed in whole blood. 
Using ANCOVA, the slope of the initial sensor decline 
in whole blood was found to be statistically significantly 
different from the initial decline in the PPP case. 
Doubling the whole blood glucose at 16 and 24 h 
caused jumps in sensor signal followed again by signal 
decays that were also statistically significant from their 
complementary PPP traces. Even though the magnitude 
of the corresponding test strip glucose concentrations 
was always lower, it is important to note that the 
slopes of the signal declines were found to be not 
statistically significant from the corresponding test strip 
measurements. 
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The PPP-immersed sensor behaved essentially as if it 
was immersed in PBS. This finding suggests that no 
glucose was being removed from the system in PPP and 
that adsorption of plasma proteins to the sensor surface 
during whole blood immersion was not contributing to 
the decreased sensor response in whole blood. Because 
the only difference between PPP and whole blood is the 
population of cells, the observed declines in whole blood 
sensor signal relative to PPP would be the result of cells 
within the system consuming glucose.

The sensor in PPP-diluted blood exhibited an intermediate 
sensor response when compared with the whole blood 
case. Similar to the sensor in whole blood, the sensor 
in PPP-diluted whole blood exhibited signal declines 
upon immersion and following glucose bolus additions, 
albeit with slopes significantly less than whole blood 
for all three cases of decline (p < .05). These results 
indicate that the cells in PPP-diluted blood were also 
consuming glucose but to a lesser extent than in whole 
blood, presumably due to the effects of dilution, further 
demonstrating the effects of cellular consumption on 
sensor signal. These findings were also corroborated by 
test strip measurements at discrete time points. 

Numerical Modeling
The dashed lines in Figure 4 display the maximal and 
minimal fractional experimental signal declines as 
derived from the data in Figure 3, where the sharper 
decline occurred following the initial sensor immersion 
and the shallower decline occurred following an addition 
of glucose. The shaded grey space between them is meant 
to represent the range of sensor declines observed when 
immersed in whole blood. The solid lines in Figure 4  
are simulated fractional declines in sensor signal with 
respect to time for cases of five distinct scenarios of 
cellular presence around the sensor (Table 2).

The erythrocyte-only simulations—be they in the bulk 
(red), in the layer (cyan), or both (black)—all under-
estimate the initial ~60% sensor decline following 
the sensor immersion in whole blood and the ~40% 
experimental decline post-glucose addition. However, 
when the simulations include just adherent leukocytes, 
the simulations lie within the range of experimental 
sensor declines in whole blood. The simulation with 
adherent macrophages and bulk erythrocytes over-
estimates both experimental declines. These data suggest 
that adherent leukocytes are more likely the primary 
mitigators of the initial sensor decline and not adherent 
erythrocytes as suggested by Klueh and coauthors.11,12

Figure 3. Comparison of mean glucose sensor readings in PPP (red), 
whole blood (blue), and dilute blood (black) as a function of time  
(n = 3). Sensor readings are corroborated by OneTouch readings for 
each (circles in dashed line). *Statistically significant differences in 
slopes of sensor signals between whole blood and PPP incubations  
(p < .05). **Statistically significant differences in slopes of sensor signals 
between dilute blood and PPP incubations (p < .05). ***Statistically 
significant differences in slopes of sensor signals between dilute blood 
and whole blood incubations (p < .05).

Figure 4. Simulated sensor reading as a function of time. The ordinate  
is represented as the fraction of initial glucose in the system and 
the abscissa is time in hours. The simulation compares five different 
scenarios against the range of maximal and minimal experimental 
sensor declines in whole blood from Figure 3 (shaded grey area 
bounded by dotted lines) to determine which group of cells 
contributes most to glucose depletion in each case. Scenario 1 (blue 
line) is represented by the presence of macrophages in the layer and 
erythrocytes in the bulk. Scenario 2 (green line) is represented by 
the presence of only macrophages in the layer and no cells in the 
bulk. Scenario 3 (red line) is represented by the presence of only 
erythrocytes in the bulk with no macrophages in the layer. Scenario 4 
(black line) is represented by the presence of only erythrocytes in both 
the bulk and the layer. Scenario 5 (cyan line) is represented by the 
presence of only erythrocytes in the layer and no cells in the bulk.
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Figure 5. Simulated effects of adherent cell aggregation and glucose 
consumption on glucose concentration at the sensor surface as a 
function of distance. Increases in cell presence were modeled as an 
increase in Vmax,layer within the layer. When macrophages are the sole 
cell type in the adherent layer (blue filled circle), there is a depletion 
of glucose with respect to distance. This depletion increases as the 
number of macrophages increases, which is denoted by an increase 
in Vmax,layer (blue open circle). When the adherent layer is populated 
by only erythrocytes (black filled circle), there is close to no radial 
depletion. This is similar to the acellular case where Vmax,layer = 0  
(red open square), indicating only a biofouling layer. Data are presented 
as fractional signal decline.

The trends in Figure 4 suggest that the cell-embedded 
biofouling layer may result in the formation of a glucose 
depletion zone adjacent to the sensor surface. Figure 5 
contains a family of normalized glucose concentration 
profiles as a function of distance extending from the 
sensor surface through a representative 75 µm thick 
biofouling layer. When erythrocytes exist as the only cell 
type within the biofouling layer (black dot), the radial 
decrease in glucose concentration relative to the initial 
concentration is imperceptible, with a decrease of 9 × 10-5%.  
This finding is nearly identical to the case where 
Vmax,layer = 0 (red squares), representing an acellular 
protein biofouling layer. However, when macrophages 
are the only cell type within the biofouling layer and 
Vmax,layer = Vmax for macrophages (blue dot), glucose 
concentrations do decrease toward the sensor surface, 
with concentrations dropping by 4% over the length 
scale. Moreover, a doubling of the macrophage Vmax 
within the layer (blue circle), which is meant to represent 
the increased presence of inflammatory cells at the site of 
implantation, increased the magnitude of depletion by 
causing concentrations to drop by 8% over the length scale.

Figure 6 displays a simulated fractional decline in 
sensor signal caused by the presence of an acellular 
protein adsorption layer with respect to time set against 
experimental sensor data from Figure 3 (black dashed 
line). Assuming a representative fibrin mat porosity 
of 0.91, the decrease in glucose concentration with 
respect to time across the protein film was negligible. 
Dramatically decreasing the porosity to a much lower 
value of 0.1 had more pronounced, but still small, 
temporal effect on glucose transport to the sensor (>90% 
of the original value). Taken together, these results show  
that the protein film itself does not restrict the transport 
of glucose to the sensor surface.

Discussion
The current study employed well-stirred whole blood 
as a simple ex vivo living system to approximate the 
environment in the first few hours of sensor implantation 
when bleeding, hemostasis, and the adhesion of blood 

Figure 6. Simulated effects of the acellular biofouling layer as a 
diffusive barrier with respect to time. Data are presented as a fractional 
signal decline.

borne cells are dominant events around the sensor surface. The use of whole blood and PPP allowed for the separation 
of transport effects from metabolic effects arising from the accumulation of blood plasma proteins and blood borne 
cells at the sensor surface. 

Trends in sensor values were compared across sensors by converting all sensor readouts from current to concentration. 
Postcalibration of sensors removed from whole blood or PPP as well as periodic glucose sampling taken with glucose 
test strips ensured that changes in sensor readings were an accurate reporting of glucose concentration in the 
surrounding milieu.
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Figure 3 compares glucose readings for sensors immersed in whole blood, PPP, and diluted whole blood. With each 
addition of glucose into PPP, both the sensor and test strip readings registered steady step increases in glucose 
concentration. The results from the PPP incubation study were corroborated by a numerical simulation showing 
that the biofouling layer had little effect in limiting glucose transport to the sensor with respect to time (Figure 6).  
This behavior in PPP was akin to measurements in buffered glucose solution, suggesting that the fouling of sensors  
by blood plasma proteins like those seen in the SEM image of Figure 7D was having no effect on the decrease in 
sensor signal.

In contrast, the sensor and test strip readings in whole blood registered sharp increases followed by declines following 
initial immersion and additions of glucose. Sensors in diluted whole blood exhibited a combination of step increases 
and signal declines intermediate between that observed for PPP and whole blood. Clearly, exposure to blood caused 
a decrease in blood glucose concentration that did not result from the accumulation of blood plasma proteins at 
the sensor surface or from a failure of the sensor to accurately read glucose; rather, these declines arose from a 
combination of sensor equilibration and cellular glucose consumption. As sensor output could be modulated by the 
concentration of cells within the blood, the role of cellular presence on sensor signal is apparent.

The ratio for erythrocytes to leukocytes in whole blood is roughly 1000:1, and as such, the SEM images of the biofouled 
sensor surface (Figure 7) showed many more erythrocytes than leukocytes, but clearly not three orders of magnitude 
more.20 In spite of their larger number, erythrocytes do not exhibit substantial metabolic requirements on a per-cell 

Figure 7. (A,B) The SEM images of a blood clot on a sensor surface (1000x, 5000x). (C) The SEM images of leukocyte adhesion on the sensor 
surface (10000x). (D) The SEM image of protein adsorption layer on the sensor surface (20000x). (A) The difference between regions covered in 
protein and cells and the bare sensor surface (outlined by dashed line). Note the infiltration of the active sensing region by cells and proteins in B 
(sensing region outlined by a dashed line).
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basis, as their net efflux of glucose is roughly that of the net influx.20–23 In contrast, activated immune cells have 
significant glucose demands.24,25 Therefore, it is reasonable to infer that accumulation of the more metabolically active 
leukocytes could more significantly affect the glucose concentration measured by the sensor. As Figure 4 demonstrates, 
the simulation that comprises adherent macrophages in the biofouling layer lies within the range of experimentally 
observed sensor declines. This suggests that inflammatory cells like macrophages, although fewer in number than 
erythrocytes, are the main determinant for a decrease in sensor signal with respect to time. It should be noted, however, 
that bulk erythrocytes, due to their sheer number in blood, still consume a significant amount of glucose. However, 
the computational scenarios where only erythrocytes were present all underestimated the experimental sensor 
declines in whole blood. 

Figure 5 further extends this conclusion by simulating the ability of erythrocytes and macrophages to induce a 
“glucose depletion zone” within the vicinity of the sensor surface. When erythrocytes exist as the only cell type within 
the biofouling layer, the radial glucose concentration does not appreciably decrease, making it indistinguishable from 
the acellular case. Through this comparison, it is evident that erythrocytes do not create a glucose depletion zone. 
However, when macrophages are considered the only cell type in the layer, depletion occurs with the magnitude 
of depletion increasing with increasing cellular presence. While the macrophage-mediated cases produce seemingly 
modest depletions, it should be noted that the time at which these radial concentrations were taken is merely hours 
after immersion of the sensor in whole blood. In an in vivo setting, this depletion, in turn, will inhibit the sensor from 
being able to accurately measure a patient’s interstitial glucose. 

Simulations were run to assess if the cellular component of the biofouling layer may have imposed some resistance 
to glucose transport. This increase in resistance due purely to the steric effects of cell presence was addressed in  
Figure 6, where the porosity is decreased from 0.9 to 0.1. Even in this case, a steady state value of greater than 90% of 
the original glucose concentration was maintained throughout the length of the simulation. Such a finding suggests 
that while the presence of cells can confer transport resistance, the effects of this resistance are small compared with 
the consumptive effects seen in Figures 4 and 5.

Given the long-standing uncertainty of how the in vivo environment affects glucose sensor function, the current study 
provides a clearer picture of how protein and cell accumulation at the sensor surface affects sensor performance 
in a living milieu. The whole blood, dilute blood, and PPP studies in concert with the numerical findings suggest 
that while the sensors accurately measure the glucose that is able to freely diffuse to them, glucose consumption by 
inflammatory cells accumulated at the sensor surface consume the analyte before it can reach the sensor, thereby 
limiting sensing capability.

Finally, this study does come with two caveats. First, it only considers the resistance to glucose transport as a 
mitigating factor in anomalous sensor response. However, glucose oxidase can only produce hydrogen peroxide when 
in the presence of oxygen. The concentration of unbound oxygen in tissue is much lower than that of glucose, meaning 
that oxygen could be the rate limiting input to sensor function.26,27 Furthermore, tissue wounded from implantation 
has been shown to have decreased oxygen tension relative to untreated tissue.28 Much like with glucose, inflammatory 
cells have elevated capacity for oxygen consumption to facilitate antimicrobial defense mechanisms like respiratory 
burst.29 While the goal of this study is to focus upon factors that would limit only glucose transport, future studies 
should investigate the role of limited oxygen supply in decreased sensor function. Second, the sensors used in this 
study are specifically intended for insertion into subcutaneous tissue for continuous monitoring of interstitial glucose 
and were not designed for sensing glucose in bulk blood. That said, these sensors accurately tracked accessible glucose 
in well-stirred whole blood and performed robustly throughout the study.

Conclusions
Whole blood, diluted whole blood, and PPP experiments indicated that decreases in sensor signal were attributable 
to the presence of glucose-consuming inflammatory cells proximal to the sensor surface. Moreover, the biofouling 
layer of adsorbed proteins on the sensor surface was shown to have no contribution to sensor signal declines.  
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Computer simulations supported the experimental findings by demonstrating the effect that an aggregation of adhered 
cells has on creating a “glucose depletion zone” of glucose proximal to the sensor surface. The results of this body of 
work demonstrate that instead of sensors failing, as is often reported in the literature, implant-associated changes in 
the local environment are creating a scenario that inhibits otherwise functioning sensors from accurately sampling 
ambient interstitial glucose concentrations.
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Appendix

Blood Sample Preparation
In accordance with institutional review board protocol 2257-08-1R17ER, samples of human blood from healthy volunteers 
were collected in 10 ml vacutainers containing ethylenediaminetetraacetic acid to prevent immediate coagulation. 
Upon collection, samples were immediately used for studies, as platelet counts have been shown to decrease by 
over 50% after 72 h ex vivo.A1 Extra measure was taken to further ensure that no coagulation takes place by adding 
a heparin sulfate stock solution at 100 U/ml in phosphate-buffered saline (PBS; -/-) to the blood to achieve a final 
heparin concentration of 5 U/ml. This final concentration is higher than the recommended dosage for treatment of  
0.4 U/ml to ensure a well-stirred solution for the subsequent long-term studies.A2

Blood constituent samples were prepared through the fractionation of blood via centrifugation using an existing 
protocol from Weibrich and coauthorsA3 to gather platelet-rich plasma and PPP for studies. Platelet-rich plasma is the 
volume of blood that is absent erythrocytes and leukocytes but contains platelets, small molecules, and plasma proteins. 
Platelet-poor plasma, however, contains only small molecules and plasma proteins. Platelet-rich plasma was obtained 
from centrifuging whole blood for 10 min at 1500 rpm and then removing the hematocrit. Platelet-poor plasma was 
obtained from centrifuging PRP  for 15 min at 3600 rpm to remove the platelets. By having different constituents of 
blood, the contributions of both the plasma and whole blood to sensor function could be delineated. 

Plasma-diluted blood was prepared as a 1:11 dilution of whole blood in its own plasma. This produced a cell 
concentration of 5 × 105 cells/ml, which is a common value for white blood cell concentrations in whole blood.A4 
Platelet-poor plasma was chosen for the blood diluent, as it should not dilute the glucose concentration of the sample 
while diluting the cell concentration. 

Sensor Calibration
Two Medtronic SofSensors were first immersed in a stirred PBS bath at 37 °C initially at 0 mg/dl glucose. To calibrate 
each sensor, glucose was added to increase the concentration to 100 mg/dl, and a baseline current was allowed to 
form. This step was then repeated for 200 mg/dl of glucose. From these three data points (0, 100, and 200 mg/dl 
glucose), a linear calibration curve relating glucose concentration to sensor output current could be made.  
Besides allowing for concentration readings, this calibration step served as a check that the sensors were properly 
working, as the sensors were reported by the manufacturer to have a linear response to glucose incursions for a range 
of 0–400 mg/dl glucose. 

Numerical Modeling: Governing Equations
The governing equation describing glucose concentration in the cellular region of the biofouling layer (Clayer) is a 
nonlinear, unidimensional diffusion-reaction equation in cylindrical coordinates through a porous medium. It has a 
diffusion term and a sink term to describe uptake by adherent cells:

∂Clayer(r,t)
∂t

 = 
Dlayer

r
 ∂
∂r

 
⎛
⎜
⎝
r
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∂r

⎞
⎟
⎠
 – Qlayer(r,t).                                           (1)

Qlayer is defined as the rate of glucose uptake by cells in the layer and is modeled by Michaelis–Menten kinetics, 
where Vmax,layer is the maximum rate of consumption (nanomoles per cell per second), KM,layer is the Michaelis–Menten 
constant (nanomoles per liter), elayer is the porosity of the biofouling layer (unitless), and zcell is the volume of a cell 
within the layer (liters per cell) [Equation (2)]. In this model, the fibrin network and cells were assumed to be well 
mixed within the biofouling layer. Therefore, they were not considered separately.
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The governing equation for glucose concentration in the bulk blood (Cbulk) is a nonlinear, unidimensional diffusion-
reaction equation in cylindrical coordinates through a porous medium:

∂Cbulk(r,t)
∂t

 = 
Dbulk

r
 ∂
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 – Qbulk(r,t).                                           (3)

Qbulk represents the consumption rate of glucose by native red blood cells in the bulk space and is modeled with 
Michaelis–Menten kinetics as well, where Vmax,bulk is the maximum rate of glucose consumption (nanomoles per cell 
per second), KM,bulk is the Michaelis–Menten constant (nanomoles per liter), ebulk is the porosity of the blood (unitless), 
and zcell is the volume of a red blood cell [liters per cell; Eq. (4)]. This term represents a glucose sink, as uptake of the 
analyte by cells removes it from the system.

Qbulk(r,t) = 
Vmax,bulkCbulk(r,t)

KM,bulkebulk
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⎠
                                                 (4)

The porosity of the acellular biofouling layer (elayer) was calculated using the specific hydraulic permeability (k) of a 
fibrin network, which has been reported by Carr and coauthorsA5 to be within the range of 2 to 7 × 10-10 cm2. For a  
network of randomly oriented fibers, the specific hydraulic permeability is calculated with Equations (5) and (6), 
where e is elayer for the simplification of the equation description.A6

k = 
rf

2e3

4G(e)(1 – e)2                                                              (5)
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As the radius of a fibrin strand (rf) is known to be 150 nm, elayer can be found for the range of reported k.A7 For the 
model, elayer was chosen to be 0.91, as it represented a midpoint of the calculated porosity values. The porosity of the bulk 
space, ebulk, was set to be 0.55, one minus the volume fraction occupied by the hematocrit (45% of the volume of blood). 

Numerical Modeling: Initial and Boundary Conditions
For the initial condition, it was assumed that the diffusion time in the biofouling layer was much shorter than the time 
scale of simulation. Therefore, the initial condition for the system was a uniform glucose concentration (CO) multiplied 
by the porosities of each compartment when the sensor is inserted into the blood at t = 0 s, a plausible assumption, 
as there was no other intrinsic source of glucose once a sample of blood is taken for an experiment. The boundary 
condition at the sensor/layer interface was that the flux of glucose diffusion in the biofouling layer times the surface 
area (A) was equal to the rate of glucose uptake by the sensor, Qsensor. At the interface of the biofouling layer and bulk 
regions, it was assumed that there was no consumption or accumulation of glucose, so the concentrations normalized 
by the porosities and fluxes were continuous across the interface. No flux boundary conditions were assigned to the outer 
boundary condition at the end of the bulk compartment, because glucose could not move into or out of the boundary 
at the edge of the beaker, creating an insulating boundary and making the flux at the outer boundary equal to zero.

Scanning Electron Microscope Imaging
Clean Medtronic MiniMed SofSensors were incubated in freshly collected whole blood and PPP treated in the manner 
described in samPle PreParation for Whole Blood and Blood Constituent study for 24 h at 37 °C. After the end of the 
incubation period, the sensor tips were fixed in 1.5% glutaraldehyde in PBS for 4 h at room temperature. The samples 
were subjected to a series of dehydration steps in solutions of ethanol of increasing concentration before treatment 
with tetramethylsilane. The treated sensor underwent gold sputter coating to a thickness of 7 µm before being imaged 
on a scanning electron microscope (FEI XL30 SEM-FEG).
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