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Abstract

Background:
The objective of this research is an artificial pancreas (AP) that performs automatic regulation of blood 
glucose levels in people with type 1 diabetes mellitus. This article describes a control strategy that performs 
algorithmic insulin dosing for maintaining safe blood glucose levels over prolonged, overnight periods of time 
and furthermore was designed with outpatient, multiday deployment in mind. Of particular concern is the 
prevention of nocturnal hypoglycemia, because during sleep, subjects cannot monitor themselves and may not 
respond to alarms. An AP intended for prolonged and unsupervised outpatient deployment must strategically 
reduce the risk of hypoglycemia during times of sleep, without requiring user interaction.

Methods:
A diurnal insulin delivery strategy based on predictive control methods is proposed. The so-called “periodic-
zone model predictive control” (PZMPC) strategy employs periodically time-dependent blood glucose output 
target zones and furthermore enforces periodically time-dependent insulin input constraints to modulate its 
behavior based on the time of day.

Results:
The proposed strategy was evaluated through an extensive simulation-based study and a preliminary clinical 
trial. Results indicate that the proposed method delivers insulin more conservatively during nighttime than 
during daytime while maintaining safe blood glucose levels at all times. In clinical trials, the proposed strategy 
delivered 77% of the amount of insulin delivered by a time-invariant control strategy; specifically, it delivered 
on average 1.23 U below, compared with 0.31 U above, the nominal basal rate overnight while maintaining 
comparable, and safe, blood glucose values.

continued 
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Introduction

The overall goal of this work is an artificial pancreas (AP) for the automated delivery of insulin to people with  
type 1 diabetes mellitus (T1DM).1–4 A crucial element of any fully automated AP is a feedback control law that performs 
algorithmic insulin dosing that is effective and safe. A variety of such glycemia controllers have been proposed, e.g., 
based on model predictive control (MPC),5–10 proportional-integral-derivative control,11,12 fuzzy logic,13 and adaptive 
neural networks.14 The authors’ group has been focusing increasingly on developing MPC strategies.15 One advantage 
of MPC is the large degree of flexibility in formulating the control objective, and this flexibility was exploited in the 
authors’ development of glycemia controllers based on zone-MPC,7,16,17 whereby the blood glucose levels are controlled 
with respect to the inclusion within a safety set rather than to track a singular set point. The zone-MPC strategy of 
Grosman and coauthors7 and van Heusden and coauthors17 has successfully been employed in multiple clinical trials 
as well as undergone extensive in silico testing. The reason it has proven effective in real-life operation of the AP is 
twofold. First, there is generally a significant plant–model mismatch due to the large intersubject and intrasubject 
variability of human physiology. Second is that the feedback signals, an estimate of the blood glucose level provided 
every 5 min by a continuous glucose monitor (CGM),18 suffers large errors and delays, both of which have time-
varying properties and have proven difficult to model and correct for. The use of zone-MPC provides robustness 
against excessively responding to plant–model mismatches and noise in the state estimate when the blood glucose 
level is estimated to be within the safe zone. The work presented in this article is an extension of the zone-MPC 
strategy presented previously.7,17

Rigorous testing of an AP requires, first, operating the controller for prolonged, all-day and multiday periods of time 
and, second, moving trials from the clinic to an outpatient environment. A major concern is nocturnal hypoglycemic 
events. The motivation for this article is to address this issue. While the user is awake, it is desirable to keep 
blood glucose levels toward the lower end of the safe range, at the risk of a higher probability of experiencing a 
hypoglycemic event. As the AP user may be more involved with her/his glucose control she/he either will become 
aware of her/his state or will be made aware of it by a threshold-based, or predictive, hypoglycemia alarm system19–21 
and correct appropriately. However, this cannot be relied upon at night, and thus the controller must be designed 
to decrease the likelihood of hypoglycemia from the level of risk permitted during the day and not rely on alarms, 
glucose supplements, or subject intervention. The primary contribution of this article is the development of a zone-
MPC law that strategically reduces the risk of hypoglycemia during the night—assumed to be the time of sleep.  
The novelty over the time-invariant zone-MPC strategy of Grosman and coauthors7 and van Heusden and coauthors17 
is that the proposal is periodically time dependent with respect to the time of day. Specifically, during the night, the 
blood glucose target zone is raised and the bound on the maximum insulin infusion rate is reduced from the values 
employed during the day. The motivation for the former is to induce a rise of blood glucose levels at night. The latter 
is enforced as a further safety mechanism and reduces the chance of controller-induced hypoglycemia. The proposed 
strategy is referred to in this article as periodic-zone model predictive control (PZMPC).

The concept of dynamically modulating the control objective, and the accompanying constraints against which it 
must be achieved, is not limited to defending against nocturnal hypoglycemia but is envisaged to be useful in more 

Abstract cont.

Conclusions:
The proposed PZMPC algorithm strategically prevents nocturnal hypoglycemia and is considered a significant 
step toward deploying APs into outpatient environments for extended periods of time in full closed-loop 
operation.

J Diabetes Sci Technol 2012;6(2):1446–1460
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general contexts too. The focus of this article is nocturnal hypoglycemia, because this particular scenario was subject 
to a clinical trial (see In-ClInIC EvaluatIon). The strategy described in this article is time dependent based on the 
time of day, where it was assumed that people sleep during the night. The assumption was “correct” in the trials 
performed, because sleep was stipulated to occur at night by means of the clinical test protocol. In a true outpatient 
environment, subject behavior cannot be prescribed, and therefore the zone-MPC strategy may have to modulate its 
target zones and input constraints based on, e.g., user input or physiologic feedback signals provided by sleep sensors 
and motion detectors. Furthermore, accommodating time-dependent control objectives in an AP may permit longer-
term adjustments of blood glucose levels tailored to subjects’ habits, physiological cycles, exercise routines, or work 
schedules, e.g., because a subject’s employment requires the use of a vehicle on certain days, for which she prefers a 
minimum blood glucose value higher than she would typically choose when not driving. Thus the work presented in 
this article may be a first step toward flexible, adaptive control laws that facilitate the semipermanent deployment of 
an AP in true outpatient environments, individualized to subjects and their lifestyles.

Methods: Periodic-Zone Model Predictive Control

Insulin–Glucose Model
The insulin–glucose model of van Heusden and coauthors17 is employed in this study and is summarized as follows. 
The model is a discrete-time linear time-invariant (LTI) system with sample period TS min. The time-step index is 
denoted by i. The scalar plant input is the administered insulin bolus uIN,i (U/TS), and the scalar plant output is the 
subject’s blood glucose value yBG,i (mg/dl). The plant is linearized around a steady state that is assumed to be achieved 
by applying the subject-specific and time-dependent basal input rate uBASAL,i (U/h) and is assumed to result in a steady 
state blood glucose output ySS = 110 mg/dl. Let the scalar input ui and output yi of the LTI model be defined as

ui = uIN,i – uBASAL,i 
TS

60 min
yi = yBG,i – ySS.

We denote by z–1 the backward shift operator, by Y(z–1) and U(z–1) the z-transform of the time-domain signals of input 
ui and output yi, respectively. The transfer characteristics from u to y are described by

Y(z–1)
U(z–1)

 = 
1800Fc

uTDI
 · z–3

(1 – p1z–1) (1 – p2z–1)2
 

with poles p1 = 0.98 and p2 = 0.965, a so-called safety factor F = 1.5 (unitless; can be tuned to the subject but is fixed to 
1.5 throughout this article), the subject-specific total daily insulin amount uTDI (U; positive scalar), and where the scalar 
constant

c = –60(1 – p1)(1 – p2)2      
mg · h

dl

⎡
⎢
⎣

⎤
⎥
⎦

is employed to set the correct gain and for unit conversion. The constant 1800 stems from the “1800 rule” for estimating 
blood glucose decrease with respect to the delivery of rapid-acting insulin.

The state-space representation of this single-input, single-output LTI system is given by

xi+1 = Axi + Bui

yi = Cxi

with three-dimensional state x, input u, and output y, and with

A = 
p1 + 2p2

1
0

–2p1p2 – p2

0
1

p1p2

0
0

⎡
⎢
⎣

⎡
⎢
⎣

2 2



1449

Periodic-Zone Model Predictive Control for Diurnal Closed-Loop  
Operation of an Artificial Pancreas Gondhalekar

www.jdst.orgJ Diabetes Sci Technol Vol 7, Issue 6, November 2013

B = 
1800Fc

uTDI
 

1
0
0

⎡
⎢
⎣

⎡
⎢
⎣

C = [0  0  1].

Periodic Daily Blood Glucose Target Zone
The main novelty and contribution of the proposed PZMPC strategy over previous strategies,7,17 with respect to 
glycemia control, is the use of periodically time-dependent output target zones. It is desired that output y satisfy

yi ≤ yi + ySS ≤ yi,                                                             (1)

where y and y denote time-dependent lower and upper bounds of the output target zone, respectively. The output 
objective of Equation (1) is a soft constraint throughout this article, i.e., the bounds may be violated.

During the day, the zones are selected equal to those employed previously:7,17 y = 80 mg/dl, y = 140 mg/dl. This choice 
provides a good combination of the controller striving to maintain a blood glucose level that is healthy semipermanently, 
while not excessively responding to disturbances and sensor errors with a non-basal insulin delivery.

During the night, the following bounds are selected: y = 110 mg/dl, y = 220 mg/dl (see ParamEtEr ChoICEs). Thus the 
blood glucose target zone is both elevated and widened during the night compared with the day. The elevated lower 
bound implies that the controller reduces the insulin input rate to below the basal rate at higher blood glucose values 
during the night than during the day. The highly elevated upper bound implies that the controller administers an 
insulin input rate exceeding the basal rate only at blood glucose levels that are high enough to pose a serious and 
near-term health risk. It furthermore implies that during the night, the controller makes no attempt to lower any blood 
glucose level less than 220 mg/dl, even though a level of 220 mg/dl would pose a considerable health risk if maintained 
indefinitely. This trade-off appears, at present, to be necessary in order to reduce the likelihood of immediately life-
threatening nocturnal hypoglycemic events.

The daytime zone is employed from 7:00 am to 10:00 Pm, the nighttime zone is from 12:00 Pm to 5:00 am, and there are 
two 2 h periods in between where the controller smoothly transitions the target zone bounds based on a cosine function. 
The target zone bounds are plotted over the course of one day in Figure 1. A formal definition of the transition 
function is omitted for brevity.

Figure 1. Daily periodic blood glucose (yBG) target zone boundaries 
(milligrams per deciliter). Daytime, 7:00 AM–10:00 PM; nighttime, 
12:00 PM–5:00 AM; daytime zone, 80–140 mg/dl; nighttime zone,  
110–220 mg/dl; smooth transition of 2 h duration (5:00 AM–7:00 AM, 
10:00 PM–12:00 PM) based on the cosine function.

Periodic Daily Insulin Input Constraints
As a further safeguard against insulin overdosing during 
sleep, the proposed PZMPC strategy enforces daily 
periodically time-dependent insulin input constraints. 
The control input ui is required to satisfy

ui ≤ ui + uBASAL,i ≤ ui                     (2)

where u and u denote time-dependent lower and upper 
bounds, respectively. Throughout this article, Equation (2)  
is considered a hard constraint, i.e., it is rigorously 
enforced.

During daytime, the input is bounded from above only by the pump’s maximum achievable flow rate and is thus 
hardware dependent. Note that a typical pump’s maximum input rate is high enough to facilitate delivering very 
large boluses over short time intervals, and thus this maximum input rate is unlikely to ever be commanded by the 
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controller. During nighttime, the input is limited from above to 1.5 uBASAL,i, i.e., 50% in excess of the subject’s time-
dependent basal rate (see ParamEtEr ChoICEs). The insulin input rate’s lower bound is zero at all times.

Daytime is defined to be the interval 5:00 am to 10:00 Pm. All other times are nighttime—there is no transition period. 
The start of daytime and nighttime coincides with the start of the output target zones’ transition periods. The insulin 
bounds are plotted over the course of one day in Figure 2.

Figure 2. Daily periodic constraints on the insulin input uIN. Daytime, 
5:00 AM–10:00 PM; nighttime, 10:00 PM–5:00 AM; daytime upper-
bound is pump maximum, hardware dependent; nighttime upper 
bound is 1.5 uBASAL,i, subject specific; lower bound is 0 U at all times.

Periodic-Zone Model Predictive Control Problem
For all time steps i, let the zone excursion be denoted by

zi = Z(yi, yi, yi),

with zone-excursion function Z(·)  defined as follows:

Z(y, y, y) = 
(y + ySS) – y    if y + ySS > y
y – (y + ySS)    if y + ySS < y
0                 otherwise.

⎧
⎨
⎩

We denote by positive integer P the so-called 
prediction horizon; by positive integer M, M ≤ P, the so-called control horizon; and further denote a positive, scalar 
weighting factor for the input u by R. The parameters P, M, and R are design parameters and assumed to be given  
(see ParamEtEr ChoICEs).

The PZMPC strategy performs closed-loop control action of the plant by applying at each time step i the first control 
input u0* of the predicted optimal control input trajectory {u*0 , ···, u*M–1} given by the solution of the PZMPC problem. The 
reader interested in the background and details of MPC is referred elsewhere.15

The PZMPC problem is as follows: Determine

{u*0 , ···, u*M–1} = arg min
{u0, ···, uM–1}

 S
P

k=1
zk

2 + RS
M–1

k=0
uk

2

subject to

     x0 = xi                                                                                         (3)

     xk+1 = Axk + Buk  ∀k ∈ N0
P–1

     yk = Cxk   ∀k ∈ N0
P

     uk = 0    ∀k ∈ NM
P–1

     zk = Z(yk, yi+k, yi+k)  ∀k ∈ N0
P                                             (4)

     ui+k ≤ uk + uBASAL,i+k ≤ ui+k ∀k ∈ N0
M                                             (5)

where Nj
l denotes the set of consecutive integers {j, ···, l}, and ∀k ∈ Nj

l means the condition must hold for all values of 
k in the set Nj

l.

With sample-period TS = 5 min, the periodic bounds are defined by sequences { yj}
p–1
j=0, {yj}

p–1
j=0, {uj}

p–1
j=0, and {uj}

p–1
j=0 of period 

length p = 24h/TS = 288. These sequences are known entirely at each time step i, and thus the output target zone 
boundaries and input constraints employed in Equations (4) and (5) are time-dependent with respect to the prediction 
time step k. This permits the PZMPC strategy to act upon future changes in output target zone that occur within the 
prediction horizon length PTS min.
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State Estimator
A state estimate is required for initialization of the predicted state trajectory in Equation (3). A linear state estimator 
(sometimes referred to as a Luenberger observer) is employed (see, e.g., The Control Handbook22). The state estimator 
is based on the same plant model of InsulIn–GluCosE modEl employed for prediction in the PZMPC problem and is 
implemented as

xi = Axi–1 + Bui–1 + L((y~ – ySS) – Cxi–1)

L = (1 + CP~CT)–1
 CP~AT

P~ = Q + AP~AT – AP~CT(1 + CP~CT)–1CP~AT

where the scalar y~i denotes the measured blood glucose level as per CGM, the superscript T denotes the transpose of 
a matrix, and positive definite weighting matrix Q is a design parameter and assumed to be given (see ParamEtEr 
ChoICEs).

The estimator state and model state are denoted by the same variable x because the model state can only be estimated. 
In contrast, the variable x employed in the PZMPC problem denotes predicted states.

Parameter Choices
The PZMPC problem is implemented employing control horizon M = 5, prediction horizon P = 9, and input weighting 
matrix R = 15. The linear state estimator described in statE EstImator is implemented using Q = 1000 I3, where I3 
denotes the identity matrix of dimension 3 × 3. These choices give good performance over the spectrum of in silico 
subjects of the University of Padova/Virginia Food and Drug Administration-accepted metabolic simulator.23 In this 
study, version 2 of the simulator is employed.

The choices of zone boundaries y, and y and the upper bound u on the insulin input during the night were chosen 
based on clinical and regulatory considerations. The values stated in the previous sections are the nominal values 
employed in the clinical trials described in In-ClInIC EvaluatIon. Note that the parameter values are flexible and 
subject to adjustment depending on the results of clinical trials. Recall, however, that the upper bound in insulin 
delivery during the night as described in PErIodIC daIly InsulIn InPut ConstraInts is as a multiplier of the subjects’ 
basal rate and thus subject specific.

Results

In Silico Experiment
The proposed PZMPC strategy was tested using version 2 of the University of Padova/Virginia Food and Drug 
Administration-accepted metabolic simulator23 with 100 in silico adult subjects. The PZMPC strategy was compared 
with two alternative control strategies. The first alternative was the zone-MPC strategy described previously,7,17 
employing the same blood glucose target zone (equal to the PZMPC daytime zone) at all times of day. This strategy is 
referred to here as invariant-zone-MPC. The second alternative employs the invariant-zone-MPC strategy only during 
the day (5:00 am–10:00 Pm) and delivers the subject-specific basal insulin input rate during the night (10:00 Pm–5:00 
am). This strategy is referred to as the nighttime-basal strategy. The nighttime-basal strategy is included in the in silico 
tests for pedagogic purposes, to elucidate differences, and can be considered a realistic worst case of subjects’ regular 
control. While human subjects may frequently awake to take corrective action, no such intervention is included in 
the in silico trials, because the target audience of the proposed PZMPC strategy are subjects suffering hypoglycemia 
unawareness and subjects who are unable to take preventative action.

Note that the purpose of the experiment is to demonstrate increased safety margins during the night when using the 
proposed PZMPC algorithm. The purpose of the experiment is neither to demonstrate superiority of PZMPC over the 
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other two control strategies in a general setting nor to participate in the debate on what, overall, is the best control 
strategy to employ for use in an AP. Nevertheless, for the in silico tests, some all-day results are provided to allow 
a comparison. All-day results could not be provided for the clinical trial results presented in In-ClInIC EvaluatIon 
because they were not available.

Simulation Scenario
The simulations start at 1:00 Pm and end at 6:00 Pm the following day (simulated time). The controllers operate in  
closed loop from 4:00 Pm on the first day until the end of the simulation. An unannounced 50 g carbohydrate (gCHO) 
dinner, 40 gCHO breakfast, and 15 gCHO snack is provided at 6:00 Pm, 7:00 am (next day), and 2:00 Pm (next day), 
respectively. Results prior to 6:00 Pm on the first day 
are ignored to reduce the effects of initial conditions. 
Simulations were performed employing the raw control 
law without the auxiliary systems present in the 
University of California, Santa Barbara/Sansum Diabetes 
Research Institute Artificial Pancreas System (APS),24 
e.g., the Health Monitoring System20 that monitors for 
hypoglycemia and provides alarms if necessary. Note 
that the clinical trials described in In-ClInIC EvaluatIon 
employed the full APS, and hypoglycemia alerts were 
followed by a 16 gCHO treatment.

The Typical Case
The simulation result for an in silico subject that displays 
very typical behavior is depicted in Figure 3. The main 
response difference, as desired and expected, is an 
elevated blood glucose level during the night when using 
PZMPC. This is achieved by imposing a prolonged 
reduction in insulin input rate during the transition 
from daytime zone to nighttime zone starting at about 
10:00 Pm. The prolonged pump suspension in the case 
of PZMPC results from the lower zone boundary rising 
and neither demonstrates the need to correct a prior 
mistake nor is evidence of a malfunction. Rather, it is a 
design feature of the PZMPC strategy. The three control 
strategies produce the same output response until shortly 
before 11:00 Pm, and a very similar output response 
after approximately 9:00 am (next day). All three control 
strategies produce the same input response until shortly 
prior to 10:00 Pm and a very similar input response 
after 8:00 am (next day). Note that the MPC strategies 
can respond to zone changes in a seemingly non-causal 
manner, because the PZMPC problem contains the 
periodically time-dependent zones over the PTS = 45 min 
prediction horizon. Note further that the PZMPC strategy 
delivers more insulin in response to the 7:00 am breakfast 
than the other two strategies. Some statistics are tabulated 
in Table 1. To summarize, the PZMPC, invariant-zone-
MPC, and nighttime-basal strategies are ordered here 
according to increasing insulin delivery and decreasing 
average blood glucose levels, both for the whole day and 
only nighttime.

Figure 3. Simulation result. Top plot is blood glucose (yBG mg/
dl): PZMPC (blue, solid), invariant-zone-MPC (red, dashed), and 
nighttime-basal (black, dash–dotted). Lower three plots are insulin 
input (uIN U/5 min): PZMPC (blue, top), invariant-zone-MPC (red, 
middle), and nighttime-basal (black, bottom). This in silico subject 
results in trajectories with typical characteristics. (See thE tyPICal CasE 
and Table 1.)

Table 1.
Results for 2 of the 100 In Silico Adult Subjectsa

Control strategy
Insulin delivery Blood glucose levels

All day Nighttime All day Nighttime

PZMPC =1 =1 =1 =1

Subject of Figure 3

Invariant-zone-MPC 1.027 1.117 0.938 0.837

Nighttime-basal 1.047 1.193 0.905 0.749

Subject of Figure 5

Invariant-zone-MPC 0.993 0.856 0.968 0.738

Nighttime-basal 1.019 0.921 0.825 0.457
a Ratio of per-subject summed insulin delivery and average blood 

glucose levels using invariant-zone-MPC and nighttime-basal 
versus those of PZMPC. Whole day, 6:00 pm–6:00 pm; nighttime, 
10:00 pm–7:00 am. See Figures 3 and 5 for trajectories.
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100 In Silico Subjects
Plotted in Figure 4 are the trajectories of mean blood glucose values over all 100 in silico adult subjects. The three control 
strategies produce very similar mean responses until midnight and after 9:00 am, with the PZMPC, invariant-zone-MPC, 
and nighttime-basal strategies producing successively lower mean glucose responses during the night and early morning.

Also plotted in Figure 4 are the minimum–maximum envelopes of the blood glucose responses for the three contrasted 
control strategies. Again, before midnight and after approximately 9:00 am, the envelopes are very similar. However, 
the PZMPC, invariant-zone-MPC, and nighttime-basal strategies result in significantly different nighttime envelope 
boundaries. Of particular interest for the purpose of increased nocturnal safety margins is that with the PZMPC 
approach, the nighttime lower bound of the envelope spends much time near (partly above) 100 mg/dl.

Further plotted in Figure 4 are the ±1 standard deviations from the means. Analogously to the minimum–maximum 
envelopes, these indicate that during the night, the glucose levels tend to be elevated for the PZMPC strategy but 
increasingly reduced for the invariant-zone and nighttime-basal strategies.

Statistics on the average, over 100 in silico adult subjects, insulin delivery, and blood glucose values are tabulated in 
Table 2. Overnight, the proposed PZMPC strategy delivered 92.7% and 91.6% the amount of insulin the invariant-zone-
MPC and nighttime-basal strategies delivered, respectively, while maintaining safe blood glucose levels. The summary 
conclusion is the same as that stated in ClInICal ProtoCol and sEtuP for the typical subject response of Figure 3:  
the PZMPC, invariant-zone-MPC, and nighttime-basal strategies are ordered here according to increasing insulin 
delivery and decreasing average blood glucose levels, both for the whole day and only nighttime.

Individual in silico subject data are not provided here due to space constraints. However, the ratio of mean blood 
glucose level achieved with invariant-zone-MPC versus the mean blood glucose level achieved with PZMPC is less 
than unity for each in silico subject, both for the whole day and only nighttime. The ratio of total insulin delivery with 
invariant-zone-MPC versus the total insulin delivery with PZMPC is greater than unity for each in silico subject except 
one. The one exception is described in more detail in an atyPICal CasE (see also Figure 5).

Figure 4. Blood glucose (yBG mg/dl) mean trajectories, mean ± standard 
deviation, and minimum–maximum envelopes over 100 in silico adult 
subjects. Mean trajectories identical on each subplot: PZMPC (blue, 
solid), invariant-zone-MPC (red, dashed), and nighttime-basal (black, 
dash–dotted). Envelopes (blue area) and standard deviation (blue, dotted): 
PZMPC (top), invariant-zone-MPC (middle), and nighttime-basal 
(bottom). STD, standard deviation.

Table 2.
Results for 100 In Silico Adult Subjectsa

Control strategy PZMPC Invariant-
zone-MPC

Nighttime-
basal

Insulin delivered (U)
9.81 ± 2.91 10.58 ± 2.92 10.70 ± 2.73

33.62 ± 7.51 34.27 ± 7.55 34.43 ± 7.36

Insulin above basal (U)
-0.82 ± 0.94 -0.05 ± 0.80 0.07 ± 0.30

5.27 ± 2.62 5.92 ± 2.67 6.09 ± 2.61

Mean blood glucose 
(mg/dl)

122 ± 13 110 ± 17 105 ± 25

138 ± 14 133 ± 17 131 ± 20

Breakfast (7:00 am) 
blood glucose (mg/dl) 131 ± 12 115 ± 14 110 ± 19

Blood glucose  
time in range  
80–140 mg/dl (%)

76 ± 28 84 ± 20 74 ± 32

55 ± 19 59 ± 18 55 ± 20

Blood glucose  
time in range  
70–180 mg/dl (%)

95 ± 13 95 ± 11 89 ± 25

85 ± 13 85 ± 12 83 ± 16

a The top row (shaded) of double-row entries corresponds to 
nighttime (10:00 pm–7:00 am) and the bottom row to the whole 
day (6:00 pm–6:00 pm). Note that the nighttime-basal strategy 
delivers basal from 10:00 pm to 5:00 am, therefore the nighttime 
“insulin above basal” from 10:00 pm–7:00 am is not exactly 0 ± 0.
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Figure 6. A CVGA plot for 100 in silico adult subjects and PZMPC over 
nighttime (10:00 PM–7:00 AM). For detailed CVGA statistics, consult 
Table 3.

Figure 7. A CVGA plot for 100 in silico adult subjects and invariant-
zone-MPC over nighttime (10:00 PM–7:00 AM). For detailed CVGA 
statistics, consult Table 3.

Figure 8. A CVGA plot for 100 in silico adult subjects and nighttime-
basal strategy over nighttime (10:00 PM–7:00 AM). For detailed CVGA 
statistics, consult Table 3.

The control variability grid analysis (CVGA)25 plots for the PZMPC, invariant-zone-MPC, and nighttime-basal strategies 
are depicted in Figures 6–8, respectively. The CVGA statistics are tabulated in Table 3. Both CVGA plots and the 
statistics table cover only nighttime: 10:00 Pm–7:00 am. The horizontal positions are comparable in the three plots, 
whereas the vertical position is clearly highest for PZMPC and lowest for the nighttime-basal strategy.

Figure 5. Simulation result. Top plot is blood glucose (yBG mg/dl): 
PZMPC (blue, solid), invariant-zone-MPC (red, dashed), and nighttime-
basal (black, dash–dotted). Lower three plots are insulin input  
(uIN U/5 min): PZMPC (blue, top), invariant-zone-MPC (red, middle), 
and nighttime-basal (black, bottom). This in silico subject resulted in 
atypically large deviations between the contrasted control laws, and 
PZMPC resulted in higher total insulin delivery than invariant-zone-
MPC and nighttime-basal strategies. (See AN ATYPICAL CASE and 
Table 1.)

An Atypical Case
With one in silico subject, the total amount of insulin 
when using PZMPC exceeded the total amount of 
insulin delivered by the invariant-zone-MPC strategy. 
The three control strategies’ responses are plotted in 
Figure 5. Insulin delivery and glucose statistics are 
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provided in Table 1. The blood glucose responses are 
significantly different after approximately midnight, 
with very elevated blood glucose levels resulting from 
the use of PZMPC. The reason why PZMPC results in 
a higher total insulin delivery is due to the high input 
rates commanded from shortly before 5:00 am until 7:00 
am, when the nighttime zone (110–220 mg/dl) transitions 
to the daytime zone (80–140 mg/dl). The behavior is 
not surprising and conforms to the response that can 
be expected from the PZMPC proposal. It is important 
to remind the reader that one of the purposes of the 
University of Padova/Virginia simulator is to facilitate 
the testing of glycemia controllers on virtual subjects who 
have physiological parameters over a wide spectrum.

Table 3.
Control Variability Grid Analysis Statistics for 
100 In Silico Adult Subjects over Nighttime (10:00 
pm–7:00 am)a

Control strategy
CVGA zone inclusion (%)

A B C D E

PZMPC 55 33 9 3 0

Invariant-zone-MPC 45 41 12 2 0

Nighttime-basal 46 38 16 0 0

a See Figures 6–8 for CVGA plots.

In-Clinic Evaluation
Clinical Protocol and Setup
A preliminary clinical trial was performed in order to test the feasibility of the proposed PZMPC strategy. In this trial, 
the PZMPC strategy was evaluated on four adult subjects in an in-clinic environment, and the results were compared 
with the results obtained in previous trials on the same four subjects (each subject served as her/his control) but using 
the invariant-zone-MPC strategy. The nighttime-basal strategy was not tested in any clinical trial.

Each trial lasted 24 h, starting at 4:00 Pm, with an unannounced 50 gCHO dinner at 6:30 Pm, an unannounced 40 gCHO 
breakfast at 7:00 am the next day, and 30 min of exercise.

The clinical trials were performed using the Dexcom Seven Plus CGM, the Animas OneTouch Ping system, and the 
APS operational, including auxiliary systems, e.g., the Health Monitoring System that monitors for hypoglycemia and 
provides alarms as necessary. During clinical trials, such hypoglycemia alarms were followed by a 16 gCHO treatment.

Subject information is listed in Table 4. The subjects’ total daily insulin delivery uTDI was employed in the model gain, 
and the subjects’ time-dependent basal profile uBASAL,i was employed during controller operation. No further subject 
data were employed.

Clinical Results and Discussion
The blood glucose and insulin delivery trajectories for the four subjects are depicted in Figures 9–12. Individual 
and summary statistics are tabulated in Table 4. The statistics are for the nighttime period 10:00 Pm–7:00 am only.  
On average, over the four subjects, over the entire nighttime, the PZMPC strategy delivered a total of 1.23 ± 0.7 U less 
than nominal basal, in contrast to the invariant-zone-MPC strategy that, on average, over the four subjects, delivered 
0.31 ± 0.3 U in excess of the nominal basal delivery. Recall that the PZMPC strategy enforces nighttime insulin upper 
bounds that are in excess of the basal rate (specifically, 1.5 uBASAL,i; see PErIodIC daIly InsulIn InPut ConstraInts). Thus the 
reduction in insulin delivery from the basal rate performed by the PZMPC strategy is not brought about simply by the 
low upper bound but is a consequence of modulating the blood glucose output target zone. Note that the reduction in 
nighttime insulin delivery is performed while maintaining practically equivalent, and equally safe, mean blood glucose 
values, similar breakfast blood glucose values, and analogous mean times in range.

While limited in scope and complicated by differing initial conditions, the preliminary clinical trials indicate the 
PZMPC strategy’s tendency to reduce insulin delivery during the night, starting before 10:00 Pm, and allowing the 
blood glucose level to rise overnight during times of sleep. This demonstrates that the PZMPC strategy achieves its 
design objective.
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Table 4.
Clinical Trial Statistics for Nighttime (10:00 pm–7:00 am)a

Subject 3 8 10 11 Mean ± standard deviation

Age (years) 56 28 44 55
Gender Male Female Female Female

Years with T1DM 43 7 34 17

Weight (kg)
95.5 66.9 75.9 61.4
97.7 66.5 75.9 61.4

Total daily insulin  
uTDI (U)

41.2 36.6 32 26.1
45.1 34.4 31 31.6

Insulin delivered (U)
8.4 4.8 3.6 4 5.20 ± 2.2

9.55 6.6 4.45 6.45 6.76 ± 2.1

Insulin above basal (U)
-1 -1.03 -0.7 -2.2 -1.23 ± 0.7

0.15 0.55 0.57 -0.05 0.31 ± 0.3

Mean CGM 
(mg/dl)

125 149 131 109 129 ± 17
148 147 137 119 138 ± 14

Mean YSI 
(mg/dl)

117 146 149 103 129 ± 22
150 127 143 128 137 ± 11

Breakfast (7:00 am) blood  
glucose (mg/dl)

93 154 121 118 121 ± 25
84 116 129 138 117 ± 24

Hypoglycemia alarms with 
16 gCHO treatments

3 2 0 2
3 0 1 2

CGM time in range 
80–140 mg/dl (%)

81 29 39 79 56.8 ± 26.8
47 46 42 85 55.0 ± 20.1

CGM time in range 
70–80 mg/dl (%)

100 81 100 87 91.9 ± 9.6
64 86 100 100 87.6 ± 16.8

a Here PZMPC is contrasted with invariant-zone-MPC. There are no clinical results for the nighttime-basal strategy. The top rows (shaded) 
of double-row entries correspond to PZMPC and the bottom row to invariant-zone-MPC.

Figure 9. Clinical trial result for subject 3: PZMPC (blue) versus invariant-zone-MPC (red). There are no results for the nighttime-basal control 
strategy. Continuous glucose monitor, solid line; YSI, filled circles; finger stick, filled squares. Filled diamonds at the top of the yBG plot indicate a 
hypoglycemia alarm with 16 gCHO treatment. Filled circles at the bottom of the yBG plot indicate meals and one unscheduled, non-rescue snack 
at 17:05. The green dashed line depicts the basal profiles employed during both the PZMPC and invariant-zone-MPC trial. The PZMPC strategy 
demonstrates a reduced insulin delivery compared with the invariant-zone strategy after 10:00 PM, with the blood glucose level rising during the 
approach to breakfast at 7:00 AM.
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Figure 10. Clinical trial result for subject 8: PZMPC (blue) versus invariant-zone-MPC (red). There are no results for the nighttime-basal control 
strategy. Continuous glucose monitor, solid line; YSI, filled circles; finger stick, filled squares. Filled diamonds at the top of the yBG plot indicate 
a hypoglycemia alarm with 16 gCHO treatment. Filled circles at the bottom of the yBG plot indicate meals. The green dashed line depicts the 
basal profile during the PZMPC trial. The basal profile during the invariant-zone-MPC trial was slightly different and not plotted. The PZMPC 
strategy performs a 1 h 21 min (21:21–22:42) pump suspension at the end of daytime, starting shortly before the transition to the nighttime zone. 
This suspension is in response to overdelivery after dinner. The PZMPC strategy further performs a 40 min (00:16–00:56) pump suspension in 
response to a sudden drop in blood glucose value. Note that the blood glucose level during the drop is within the daytime zone 80–140 mg/dl. 
With PZMPC, the blood glucose level is allowed to rise during the night. In contrast, the invariant-zone-MPC strategy performs corrective action 
in the period 4:00 AM–5:00 AM.

Figure 11. Clinical trial result for subject 10: PZMPC (blue) versus invariant-zone-MPC (red). There are no results for the nighttime-basal control 
strategy. Continuous glucose monitor, solid line; YSI, filled circles; finger stick, filled squares. Filled diamonds at the top of the yBG plot indicate a 
hypoglycemia alarm with 16 gCHO treatment. Filled circles at the bottom of the yBG plot indicate meals. The green dashed line depicts the basal 
profile during the PZMPC trial. The basal profile during the invariant-zone-MPC trial was slightly different and not plotted. The PZMPC strategy 
performs a 2 h (21:45–23:45) pump suspension, starting at the start of the transition from the daytime zone to the nighttime zone, and permits the 
blood glucose level to rise steadily. The invariant-zone-MPC strategy also performs a prolonged pump suspension in the late evening (20:46–23:17, 
except one controller step at 22:21) but as a result of overdelivery after dinner. The invariant-zone-MPC strategy furthermore administers insulin 
exceeding the basal rate around 1:00 AM, whereas the PZMPC strategy administers only the basal rate at comparable blood glucose levels during 
nighttime.
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Figure 12. Clinical trial result for subject 11: PZMPC (blue) versus invariant-zone-MPC (red). There are no results for the nighttime-basal control 
strategy. Continuous glucose monitor, solid line; YSI, filled circles; finger stick, filled squares. Filled diamonds at the top of the yBG plot indicate a 
hypoglycemia alarm with 16 gCHO treatment. Filled circles at the bottom of the yBG plot indicate meals. The green dashed line depicts the basal 
profile during the PZMPC trial. The basal profile during the invariant-zone-MPC trial was slightly different and not plotted. The PZMPC strategy 
performs a 2 h 45 min (22:01–00:46) pump suspension from the start of the transition from the daytime zone to the nighttime zone and allows 
the blood glucose level to rise steadily throughout the night. Note, however, that the blood glucose trajectory for the PZMPC case is beneath 
the daytime zone during the period (22:58–00:32), and thus the invariant-zone-MPC strategy would be expected to perform an extended pump 
suspension in that case also.

A Comment on Controller Tuning
The two sets of clinical trials, one with PZMPC, the other with invariant-zone-MPC, were not conducted for the 
purpose of elucidating differences in the respective control strategies. The PZMPC trials were conducted as a proof-
of-concept study, and the earlier invariant-zone-MPC trails were part of an independent study. It is important to note 
that there were differences in both the control algorithm and also the APS platform.

One crucial point is that the PZMPC and invariant-zone-MPC strategy were tuned differently. Specifically, R = 15 
for the PZMPC trials, whereas the value of R was higher for the invariant-zone-MPC trials. The change was made 
for clinical considerations. Unfortunately, this tuning resulted in the PZMPC strategy administering insulin too 
aggressively, in particular, in response to unannounced meals. This behavior is clearly discernible in Figures 10–12. 
This aggressive tuning is considered inappropriate, and the parameter R has been adjusted to a higher value for future 
trials. Despite the unfortunate tuning, the PZMPC strategy administered insulin more conservatively during the night, 
thus strengthening the above conclusion that the PZMPC strategy achieves its design objective by enforcing safe 
nocturnal insulin delivery.

Conclusions
An MPC strategy employing daily periodic blood glucose target zones and daily periodic insulin input constraints 
was proposed in order to operate glycemia controllers safely for overnight periods when the subject is asleep.  
The development of an AP that operates safely without requiring subject, or expert, supervision is essential for the 
deployment of APs that operate for prolonged, multiday periods. Both in silico and clinical testing confirmed that the 
proposed PZMPC strategy achieves the goal of reducing the threat of hypoglycemia during nighttime. The tradeoff 
may be slightly elevated glucose levels overnight, yet still in the acceptable near-normal range and without excessive 
hyperglycemia. Nevertheless, the proposed strategy remains in closed loop at all times of day and strives to correct 
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blood glucose levels that are low, or very high. Thus the proposed strategy is a stepping stone to advancing the 
control of an AP without switching to delivering the basal rate in open loop during nighttime, as is currently common.  
The success of the tests and trials conducted thus far lead the authors to believe that time-dependent controller 
operation is a crucial element for the safe deployment of APs, and it is envisaged that the proposed control strategy—
or one similar to it—will be indispensable for the testing, verification, and operation of an AP for the treatment of T1DM.
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