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Abstract

Background:
Several clinical trials have been performed to assess safety and efficacy of closed-loop control. Some included 
physical activity (PA), with the goal of challenging the control algorithms with a rapid change in insulin sensitivity 
while reducing the risk of hypoglycemia. However, the question remains as to the necessity to inform the 
control algorithm on the imminent PA. The aim here is to assess in silico (i) if it is necessary to announce 
upcoming PA and (ii) if this is the case, what is the safest strategy of basal insulin reduction in the context of 
the closed-loop control.

Methods:
We modified the University of Virginia/Padova type 1 diabetes simulator to incorporate the effect of PA based 
on a study in healthy subjects that demonstrated an almost doubling of insulin sensitivity during PA versus rest. 
Two in silico experiments, including a PA session, have been simulated on the virtual adult population: one in 
the absence of and one with different degrees of reductions and durations of basal insulin infusion rates.

Results:
Most in silico subjects experienced hypoglycemia in the absence of basal insulin adjustment. We show that, 
in the absence of patient-specific information, a safe and effective strategy is to reduce basal insulin by 50% 
starting 90 min before exercise and by 30% during exercise.

Conclusions:
Our results suggest that control algorithms could benefit by knowing an upcoming PA. Ideally, the control 
algorithm should be informed about the patient-specific basal insulin reduction pattern. An alternative strategy 
that has been proposed here has been deemed safe and effective in in silico experiments.
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Introduction

Due to the inability of the pancreas to produce insulin, patients with type 1 diabetes mellitus (T1DM) use exogenously 
administered insulin to maintain blood glucose (BG) concentration in the near-normal range (70–180 mg/dl). Severe 
hypoglycemia is very dangerous, possibly leading to coma and ultimately to death, while sustained hyperglycemia may 
cause long-term microvascular and macrovascular complications. However, BG control is extremely challenging due 
to the delay between insulin administration and action, physiological perturbations [meals and physical activity (PA)], 
and intrasubject variability.

Thanks to the availability of continuous glucose monitoring (CGM) systems and continuous subcutaneous insulin 
infusion pumps, researchers have focused on the development of a wearable artificial pancreas (AP), a system able 
to modulate subcutaneous insulin infusion rates automatically based on CGM readings, thus helping in optimally 
controlling BG.1 Artificial pancreas prototypes have been tested successfully in inpatient trials, demonstrating reduced 
occurrence of hypoglycemia with respect to standard therapy, increased time spent in the target range, and reduction  
of mean glucose.2–7 Some of these trials6,7 included a session of PA in order to test the ability of the control algorithm 
to deal with the rapid changes in insulin sensitivity due to exercise and prevent the risk of immediate and delayed 
hypoglycemia associated with daily activity. In standard therapy, subjects usually, but not always, reduce their basal 
insulin infusion by a given percentage, starting up to 2 h before exercise session, but each patient follows his/her own 
routine and physician suggestions.

It remains a question if one needs to inform the control algorithm regarding impending PA and, if this is the 
case, the degree and duration of changes to insulin infusion rates in relation to PA. In particular, model predictive 
control algorithms (e.g., Soru and coauthors8 and Patek and coauthors9) may benefit greatly from the availability of 
this information because they can use it to predict future glucose level and adjust insulin infusion rates accordingly.  
The issue is particularly important because maintaining unchanged basal infusion rates in the presence of PA often 
leads to hypoglycemia.

The aim of the present study was to assess in silico (i) if it is necessary to announce upcoming PA and (ii) if this is 
the case, the safest strategy of basal insulin reduction especially when patient-specific information is lacking. We used 
the University of Virginia (UVA)/Padova T1DM simulator10,11 and the effect of PA was included in the simulator by 
using the results of a recent study in healthy subjects12 that reported an almost doubling of insulin sensitivity during 
PA with respect to rest. Two in silico experiments, including an exercise session, have been simulated on a 100-virtual-
adult population with T1DM: one maintaining subject-specific basal insulin infusion profile and the other with different 
degrees of reductions and durations of basal insulin infusion rates. The optimization strategy aims to explore, in a  
simulation context, the best combination of basal insulin infusion rate before and during PA that would prevent 
hypoglycemia during exercise.

Materials and Methods

The University of Virginia/Padova Type 1 Diabetes Simulator
The UVA/Padova T1DM simulator10,11 is a tool accepted by the Food and Drug Administration as a substitute for 
preclinical trials of certain insulin treatments, including closed-loop control algorithms (Figure 1). It describes the 
glucose dynamics during a meal by putting in relation plasma glucose, insulin, and glucagon concentrations with glucose 
fluxes (endogenous glucose production, glucose rate of appearance, glucose utilization, renal excretion), insulin fluxes 
(rate of insulin appearance from subcutaneous tissue, insulin degradation), and glucagon fluxes (glucagon secretion, 
glucagon degradation). However, the effect of PA was not yet been included in the simulator.

The primary effect of PA is to enhance glucose utilization by the tissues13 (Figure 1, red arrow). The model of glucose 
utilization currently implemented in the simulator assumes that glucose kinetics are described by two compartments, 
that insulin-independent glucose utilization by the brain and the erythrocytes takes place in the first compartment 
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Figure 1. The new version of T1DM simulator11 with the effect of PA evidenced. S.C., subcutaneous.

(plasma and rapidly equilibrating tissues) and is constant, while insulin-dependent glucose utilization (Uid) takes place 
in the remote compartment (slowly equilibrating tissues) and depends nonlinearly from glucose in the tissues:

Uid(t) = 
⎣Vm0 + Vmx · X(t) · (1 + r1 · risk)⎦ · Gt(t)

Km0 + Gt(t)
                                           (1)

where Gt(t) is glucose mass in the peripheral compartment; Vm0, Vmx, Km0, and p2U are model parameters; and,  
in particular, Vmx represents insulin sensitivity, i.e., the ability of insulin to stimulate glucose utilization. Insulin action 
X(t) on glucose utilization is described by

Ẋ(t) = –p2U · X(t) + p2U · [I(t) – Ib],                                                 (2)
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where p2U is the rate constant of insulin action on the peripheral glucose utilization and I(t) is plasma insulin 
concentration (suffix b denotes basal state). Moreover, to describe insulin action in the hypoglycemic range, X(t) is 
modulated by the glucose risk function:14

risk = 
0  if G ≥ Gb
10 · [f(G)]2 if Gth ≤ G < Gb
10 · [f(Gth)] if G < Gth

⎧
⎨
⎩

                                                (3)

with Gb the basal glucose, Gth the hypoglycemic threshold (set at 60 mg/dl), and

f(G) = log G
Gb

⎛
⎜
⎝

⎞
⎟
⎠

r2

                                                             (4)

with r1 and r2 model parameters.

The complete set of model equations can be found from Dalla Man and coauthors.11

Modeling the Effect of Physical Activity
It is an accepted notion that PA increases insulin sensitivity (SI), i.e., the ability of insulin to stimulate glucose utilization, 
likely due to enhanced glucose uptake by the muscles. The effect size of PA on SI has been estimated in 12 healthy 
subjects who underwent a moderate-grade PA on a treadmill (~50% of VO2max) for 60 min during a 75 min period,  
2 h after having ingested a mixed meal containing 75 g of carbohydrate.12 SI was estimated first using data of the first 
120 min after the meal (SI

rest), i.e., in the absence of PA, and then using data of the whole experiment (lasting 360 min; 
SI

overall), i.e., in the presence of PA. It was found that SI
overall was almost twice SI

rest consistently in all subjects. SI
overall is 

basically the average of SI in the entire duration of the experiment. To single out the actual value of SI during exercise 
(SI

ex), one can assume that SI is equal to SI
rest for t ≤ 120, equal to SI

ex for 120 < t ≤ 195 and decreases linearly from  
SI

ex to SI
rest in 195 < t ≤ 360 (Figure 2, upper panel, pink line). With this assumption, the average SI during the whole 

experiment (SI
overall) can be calculated by integrating the SI profile of Figure 2 from tmeal and tend and dividing it by the 

length of the integration interval (tend–tmeal):

SI
overall = 

SI
rest · (tex,start – tmeal) + SI

ex ·(tex,end – tex,start) + 
(SI

ex + SI
rest) · (tend – tex,end)

2
(tend – tmeal)

                      (5)

thus

SI
rest · (tex,start – tmeal) + SI

ex · (tex,end – tex,start) + 
(SI

ex + SI
rest) · (tend – tex,end)

2
 = SI

overall · (tend – tmeal)               (6)

Moreover, assuming that SI
ex is α·SI

rest and, as reported in Schiavon and coauthors,12 SI
overall is almost twice SI

rest 
consistently in all subjects, we can explicitly calculate α from

SI
rest · (tex,start – tmeal) + α · SI

rest · (tex,end – tex,start) + 
(1 + α) · SI

rest · (tend – tex,end)
2

 = 2 · SI
rest · (tend – tmeal)           (7)

where tmeal and tend are time of the meal and time of the end of experiment, while tex,start and tex,end are time of the start 
and end of the exercise session, respectively, obtaining α = 3.29.

This effect of exercise on glucose dynamics was incorporated into the UVA/Padova T1DM simulator by modifying 
accordingly the parameter Vmx, while all other parameters are maintained fixed to standard UVA/Padova T1DM 
population parameters.
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Figure 2. (Upper panel) Simulation scenario mimicking the experimental protocol reported by Schiavon and coauthors12 with the exercise session 
(pink line). (Lower panel) Standard premeal insulin bolus given at mealtime and basal insulin infusion rate adjustments, with respect to the 
patient’s profile, during (red arrow) and/or before (blue and green arrows) the exercise session. CHO, carbohydrate.

It is well-known that PA also stimulates noninsulin mediated glucose transport, but as discussed by Schiavon and 
coauthors,12 the contribution of this insulin-independent effect of PA has not yet been quantitatively assessed, and 
thus it is not possible at this time to simulate the relative contributions of insulin-dependent and insulin-independent 
effects on glucose utilization.

In Silico Experiments
The simulation scenario mimics the experimental protocol as reported previously.12 It consists of a meal (containing 
75g of carbohydrates) administered 3 h after the start of the experiment to 100 in silico adults with T1DM. The exercise 
session was simulated to start 2 h after the meal and to last 75 min (Figure 2, upper panel) as previously described.12 
The simulation of the exercise session was obtained by modifying parameter Vmx as shown in Figure 2 (upper panel, 
pink line). The virtual subjects received a standard premeal insulin bolus based on each individual’s insulin-to-
carbohydrate ratio, while basal insulin infusion rate was first maintained fixed to patient basal profile (experiment 1) 
and then decreased in various degrees and durations in relation to usual basal insulin infusion rates (experiment 2).

Experiment 1
The virtual subjects received their own basal insulin profile, a subject-specific constant insulin infusion rate able to 
maintain glucose at steady state in the absence of external disturbances such as meals and PA. This provided the worst-
case scenario to which to compare the simulation results of experiment 2. 

Experiment 2
The virtual subjects received their own basal insulin profile lowered by step reductions of 10% during and/or before 
the exercise session to prevent hypoglycemia (Figure 2, lower panel), while outside these ranges, they received constant 
rates of basal insulin infusion. In particular, before the exercise session, we simulated step reductions of basal insulin 
rates ranging from 10% to 60%, with a 10% step, starting 90, 60, and 30 min before the beginning of the exercise 
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(Figure 2, lower panel, blue and green arrows). During the exercise, reductions ranging from 10% to 60% with a 10% 
step have been tested, lasting for the entire exercise duration (Figure 2, lower panel, red arrow). Outside these time 
intervals, basal insulin infusion rate was maintained constant and equal to the patient’s basal insulin profile (Figure 2, 
lower panel, black line).

Data Analysis
Results are presented as mean ± standard deviation. Safety (reduction of hypoglycemia) and efficacy (attenuation of 
hyperglycemia) of different simulated adjustments to basal insulin infusion rates have been assessed by using the control 
variability grid analysis (CVGA)15 and by computing the time spent in the target range of 90–140 mg/dl. For this 
calculation, we used simulated glucose profiles from the start of exercise session to 7 h later, i.e., 3 h after that Vmx has 
returned to its rest value (Figure 2, upper panel).

Results

Experiment 1
Simulated plasma glucose concentrations in the 100 T1DM virtual subjects are shown in Figure 3 (upper-left panel).  
As expected, most of the subjects experienced hypoglycemia (defined as glucose concentration below 70 mg/dl), 
with several of them having severe hypoglycemic episodes (defined as glucose concentration below 50 mg/dl). This is 
confirmed by the CVGA (Figure 3, lower-left panel), which shows 15% of the subjects in the lower C zone, 73% in the 
lower D zone, no subject in the A zone, and only 12% of the subjects in the B zone. The average time in target was 
28.8% ± 16.1%.

Figure 3. Simulated plasma glucose concentrations (upper panel) and CVGA (lower panel) in the 100 T1DM virtual subjects: no basal insulin 
infusion rate adjustment (left panel), optimal combination of subject-specific adjustments (middle panel), and optimal combination of population 
(on average) adjustments (right panel). The shaded box represents the exercise period.
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Experiment 2
The distribution of the optimal combination of basal reductions in the 100 in silico subjects are shown in Figure 4.  
Most of the subjects needed to reduce their basal insulin of 60% (middle panel) from 90 min before the start of exercise 
(Figure 4, left panel) and maintain this reduction until the end of the PA (Figure 4, right panel). However, there 
is large intersubject variability, and the optimal reduction strategy is different from the one described earlier in a 
significant proportion of subjects. Therefore, ideally, one should apply a personalized strategy to each subject. In this 
case, in fact, our simulations show that the average time in target increases to 90.2% ± 11.4% and that 96% of the subjects 
do not experience hypoglycemia (Figure 3, upper-middle panel) while the remaining 4% only show mild hypoglycemia 
episodes (plasma glucose between 50 and 70 mg/dl). This is also confirmed by the CVGA (Figure 3, lower-middle panel), 
which shows 14% of the subjects in zone A, 82% in zone B, and only 4% in lower zone D. 

Figure 4. Distribution of the optimal subject-specific combination of basal reductions in the 100 T1DM virtual subjects: time before the start of PA 
(left), reduction before PA (middle), and reduction during PA (right panel).

Unfortunately, a patient-specific optimal basal reduction strategy is not always available. The simulation results can 
provide some guidelines in case this patient-specific information is missing. We selected the basal reduction pattern 
that maximizes efficacy and safety in all the 100 in silico subjects, using as a metric the time spent in the target range 
of 90–140 mg/dl. We found that a 30% reduction of basal insulin rates during PA, preceded by 50% reduction starting  
90 min before the start of PA, is the combination that most effectively guarantees safety and efficacy in most of the 
100 in silico population. As a matter of fact, if this adjustment is applied to all virtual subjects, average time in target 
is 72.7% ± 23.5%. The glucose-simulated profiles are shown in Figure 3 (upper-right panel), with 84% of the subjects 
avoiding hypoglycemia. This was confirmed by the CVGA (Figure 3, lower-right panel): 10% of the subjects lie in the  
A zone, 74% in the B zone, 14% in the lower D zone, and 2% in the lower C zone.

Discussion
Inpatient studies demonstrated that a wearable AP may reduce occurrence of hypoglycemia, increase time spent in 
the target range, and reduce mean glucose concentrations with respect to standard therapy. However, control algorithms 
have to deal with many challenges in outpatient conditions such as PA. In standard open-loop therapy, subjects usually, 
but not always, reduce their basal insulin infusion rates in order to prevent the risk of hypoglycemia due to the rapid 
change in insulin sensitivity caused by exercise. In closed-loop therapy, the need to inform control algorithms regarding 
impending PA in order to appropriately reduce insulin infusion rates and prevent hypoglycemia both during and after 
exercise remains debatable.

Physical activity is known to improve insulin action; however, a model of PA effect on glucose–insulin dynamics and the 
relative contribution of insulin- and non-insulin-mediated effect on muscle glucose uptake has not yet been developed. 
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Here we exploited the results published recently,12 where the quantification of the effect size of PA on insulin sensitivity 
has been estimated in healthy controls. This effect has been incorporated into the UVA/Padova T1DM simulator, and 
two experiments, including an exercise session, have been simulated: one maintaining subject-specific basal insulin 
infusion profile and another with varying degrees of reductions and durations of basal insulin infusion rates. As expected, 
most of the virtual subjects (88%) experienced hypoglycemia when no announcement of upcoming PA was provided. 
On the other hand, if the information on modifications to basal insulin infusion rates during PA is provided to the 
algorithm, then the safest and most effective reduction of basal insulin rates (16% of hypoglycemic events) is a 30% 
reduction during PA, preceded by 50% reduction starting 90 min before the start of PA. These results also suggest 
that it would be useful to provide information about impending PA to the control algorithm in order to intervene 
promptly to reduce the risk of hypoglycemia and provide guidelines when patient-specific information before/during 
PA is not available.

A limitation of this study is the assumption of a nonphysiological step increase in insulin sensitivity at the start of PA. 
However, a model of PA on glucose–insulin dynamics has not yet been developed. Simulation can be refined once a 
model is formulated based on the results reported by Schiavon and coauthors.12

Conclusions
The aim of this study was to use simulation to suggest a best strategy that could be adopted during AP clinical trials 
that involves a session of moderate PA. Our results demonstrate that (i) PA markedly affects glucose control, leading 
to severe hypoglycemia if not properly addressed; (ii) any control algorithm would benefit by knowing in advance 
that PA is imminent, because the large delay between subcutaneous insulin infusion and its effect on plasma glucose 
concentration preclude the possibility of simply stopping subcutaneous basal insulin infusion when PA is detected; 
(iii) if available, the control algorithm should be informed about patient-specific basal insulin reduction pattern; and 
(iv) if such information is not available, a “generic” basal reduction strategy is proposed that has been proved to be 
rather safe and effective.
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