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Abstract

Background:
The objective of this research is to develop a new artificial pancreas that takes into account the experience 
accumulated during more than 5000 h of closed-loop control in several clinical research centers. The main objective 
is to reduce the mean glucose value without exacerbating hypo phenomena. Controller design and in silico 
testing were performed on a new virtual population of the University of Virginia/Padova simulator.

Methods:
A new sensor model was developed based on the Comparison of Two Artificial Pancreas Systems for Closed-
Loop Blood Glucose Control versus Open-Loop Control in Patients with Type 1 Diabetes trial AP@home data. 
The Kalman filter incorporated in the controller has been tuned using plasma and pump insulin as well as plasma 
and continuous glucose monitoring measures collected in clinical research centers. New constraints describing 
clinical knowledge not incorporated in the simulator but very critical in real patients (e.g., pump shutoff) have 
been introduced. The proposed model predictive control (MPC) is characterized by a low computational burden 
and memory requirements, and it is ready for an embedded implementation.

Results:
The new MPC was tested with an intensive simulation study on the University of Virginia/Padova simulator 
equipped with a new virtual population. It was also used in some preliminary outpatient pilot trials. The obtained 
results are very promising in terms of mean glucose and number of patients in the critical zone of the control 
variability grid analysis.

Conclusions:
The proposed MPC improves on the performance of a previous controller already tested in several experiments 
in the AP@home and JDRF projects. This algorithm complemented with a safety supervision module is a significant 
step toward deploying artificial pancreases into outpatient environments for extended periods of time.
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Introduction

An artificial pancreas (AP) is an automatic device for regulating glucose in diabetes patients. A new perspective 
for the development of a device suitable for outpatient use started with the availability of subcutaneous (SC) glucose 
sensors and SC insulin pumps. The integration of these two components with a control algorithm is called the AP. 
In particular, in 1999, MiniMed introduced a commercial continuous glucose monitoring (CGM) system. Since then, 
several research projects studied and experimented with AP systems, starting with the MiniMed AP project,1 with 
an acceleration caused by the launch of research projects funded by the JDRF, the European Commission, and the 
National Institutes of Health.2–6

Designing a control algorithm for the SC-to-SC glucose–insulin system is challenging, because the system is characterized 
by significant interindividual variability, time-varying dynamics, nonlinear phenomena, and time delays due to 
the absorption of insulin from the SC level to the blood and, in reverse, of glucose from the blood to the SC level. 
Moreover, the glucose profile depends on the insulin, whose delivery is bounded not only within an interval ranging 
from zero to a maximal value imposed by the pump, but also on very important disturbances such as meals and 
physical exercise that may be predicted to some extent.

The objective of the control algorithm is to keep the glucose levels within an optimal range (70–140 mg/dl). In the 
literature, several algorithms have been presented starting from proportional-integral-derivative schemes1,7 and, more 
recently, relying on a very promising approach called model predictive control (MPC).2,8–18 So far, encouraging pilot 
results have been reported using proportional-integral-derivative control1,3 and MPC strategies.4,6,19 In Breton and 
coauthors,20 the MPC algorithm described by Patek and coauthors18 was in vivo tested. A comparison of two MPC-
based artificial pancreas systems was performed by Luijf and coauthors.21 The study was performed on 48 patients 
with type 1 diabetes and consisted of three randomized 24 h admissions (with 23 h of closed-loop control in two of the 
admissions and one control admission with open loop) to the clinical research center. One of the closed-loop controls 
is the iAP (or International Artificial Pancreas Study Group) control algorithm, developed following the modular 
architecture proposed by Patek and coauthors18 that includes the MPC algorithm described by Soru and coauthors,10 
herein called MPC1, and the safety supervision module (SSM) described by Hughes and coauthors.22 In this article, 
a new MPC version, herein called MPC2, was designed based on collected data and other clinical experiences.  
The results illustrated in this article were tested in silico using the simulator developed by the Universities of Padova and 
Virginia equipped with a new cohort of virtual subjects that span sufficiently well the interindividual variability of 
key metabolic parameters in the general population of diabetes patients (see  the work of Dalla Man and coauthors23).

Methods
The MPC1 algorithm takes advantage of the knowledge of conventional therapy that addresses glucose regulation by 
a mix of piecewise constant insulin infusion, also called basal insulin, ub, and impulse-like injections that are made 
just before meals to prevent excessive rises of blood glucose (BG), also called insulin bolus, ubolus. In the absence of meals,  
the basal insulin, which varies from patient to patient, would eventually bring BG to a steady-state value, called  
basal glucose, Gb. The amount of the insulin bolus is scaled to the meal size using the patient parameters carbohydrate-to-
insulin ratio and correction factor.

MPC1 is the linear model predictive control (LMPC) described by Soru and coauthors10 that uses an approximate linear 
model of the insulin–glucose dynamics obtained from the linearization around a suitable working point of the more 
complex nonlinear model reported in by Magni and coauthors.9 The derived linearized model can be written in the 
following form:

x(k + 1) = Ax(k) + Bu(k) + Md(k)
y(k) = Cx(k)

⎧
⎨
⎩

,                                                   (1)
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Table 1.
Table of State Vector x(k) of the Dalla Man Model 
reported by Magni and Coauthors9

State Description Units

x1 Glucose into the stomach in solid phase mg

x2 Glucose into the stomach in liquid phase mg

x3 Glucose into the intestine mg

x4 Plasma glucose mg/kg

x5 Tissues glucose mg/kg

x6 Plasma insulin pmol/kg

x7 Insulin action pmol/liter

x8 Insulin action delay on glucose production pmol/liter

x9 Delayed insulin pmol/liter

x10 Insulin in the liver pmol/kg

x11 First compartments of SC insulin pmol/kg

x12 Second compartments of SC insulin pmol/kg

x13 SC glucose mg/kg

where x(k) ∈ R13 is the state as reported in Table 1,  
y(k) = CGM(k) – Gb (mg/dl) is the difference between the 
SC glucose and the basal value (Gb), u(k) = i(k) – ub(k) 
(pmol/kg) is the difference between the injected insulin 
and its reference value (normalized by the patient weight), 
and d(k) (mg) represents the meal.

Thereafter, it is assumed that the triplet (A, B, C) is both 
stabilizable and detectable. The LMPC algorithm uses 
this model to predict the future glucose profile given the 
carbohydrates and insulin taken in by the patient.

The cost function is a quadratic penalty defined as

J(x(k), u(·), k) = S
N – 1

i = 0

(q(y(k + i) – yo(k + i))2 + (u(k + i)

– uo(k + i))2 + ∣∣x(k + N)∣∣2
P                 (2)

where q is the positive scalar weight and N is the prediction 
horizon. Moreover, ∣∣x(k + N)∣∣P = x(k + N)’Px(k + N), 
where P is the unique nonnegative solution of the 
discrete time Riccati equation:

P = A’PA + qC’C – A’PB(1 + B’PB)B’PA

The reference signals are defined as yo(k) = ñy(k) – Gb (mg/dl), the difference between the reference value (ñy) of the SC 
glucose and the glucose basal value (Gb), and uo(t) = ũ(k) – ub(k) (pmol/kg), the difference between the reference value (ũ) 
of the insulin profile and the insulin basal value (ub), normalized by the patient weight.

The control law associated with a constrained LMPC may be derived either by solving an on-line quadratic 
programming problem or through a multiparametric approach, whose result is a piecewise constant control law that can 
be computed offline.

However, in view of the restrictive regulatory constraint and the significant uncertainty in the model, and in order to 
avoid online optimization or the computational and memory burdens of an explicit MPC for constrained systems,  
the proposed algorithm does not include explicit constraints. Hence it is possible to calculate the closed-form solution:

uMPC(k) = [1  0  ···   0](–Kxx(k) – KdD(k) + KYoYo(k) + KUoUo(k)),                                 (3)

where Kx ∈ RNx13, Kd ∈ RNxN, KYo ∈ RNxN, KUo ∈ RNxN are derived as described in by Soru and coauthors10 and

D(k) = [d(k)   ···   d(k + N – 2)  d(k + N – 1)]’

is the vector of future meals and

Yo(k) = [yo(k + 1) ... yo(k + N – 1) 0]’

Uo(k) = [uo(k) ... uo(k + N – 2)uo(k + N – 1)]’

In general, the state x(k) of the model is not accessible, so a Kalman filter is used to estimate it. The Kalman filter 
improves the quality of the information provided to the LMPC algorithm, exploiting the knowledge included in the 
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model as well as the past injected insulin. In fact, the Kalman filter is used to update the estimated glucose–insulin 
state using past information about glucose, insulin, and carbohydrates. The linear system (Equation 1), affected by noises, 
is written as

x(k + 1) = Ax(k) + Bu(k) + Md(k) + vx(k)
y(k) = Cx(k) + vy(k)

⎧
⎨
⎩

where v = [vx  vy] is a multivariate zero-mean white Gaussian noise with covariance matrix

V = QKF   0
 0   RKF

⎡
⎢
⎣

⎤
⎥
⎦
, QKF > 0 RKF > 0,

and the initial state x0 = x(0) is assumed to be a zero mean Gaussian random variable independent of v.

From clinical data collected during the Comparison of Two Artificial Pancreas Systems for Closed-Loop Blood Glucose 
Control versus Open-Loop Control in Patients with Type 1 Diabetes (CAT) AP@home trial reported by Luijf and 
coauthors,21 three major problems were pointed out: a measurement error larger than the one assumed for Kalman 
filter tuning, a virtual population used for controller synthesis whose insulin sensitivity was underestimated, and too-
high nocturnal glucose levels.

New Measurement Error Model Derived from CAT AP@home
From the 141 data sets relative to the 47 patients enrolled in the CAT AP@home trial, information about BG and 
CGM was extracted. The BG sampling time was 15 min, with exception of the evening hours when it was decreased 
to 30 min and the night when it was 60 min. The CGM was sampled with the Dexcom Seven® Plus every 5 min.  
A critical point in the synthesis of a closed-loop controller is the quality of the measurement error model. The University 
of Virginia/Padova simulator,24 used to tune the MPC by Soru and coauthors,10 includes the error model proposed 
by Breton and Kovatchev25 consisting of an autoregressive [AR(1)] model and a nonlinear Johnson function. In order to 
evaluate the capability of the measurement error model to describe the real difference between SC glucose concentration 
and CGM, the scheme reported in Figure 1 is first introduced. The relation between BG and interstitial glucose is 
modeled as a first-order system with time constant t, which is representative of the lag between the blood and SC 
glucose concentrations. As constant t is unknown and patient dependent, a sensitivity analysis of ê with respect 
to t is made by considering the latter as a lognormal stochastic variable with mean 10.27 [s] and variance 7.18 [s2]. 
The estimate of the measurement error ê is compared with the modeled error êM through the visual predictive 
check approach.26 The visual predictive check representation of ê and êM obtained through the model proposed by 
Breton and Kovatchev,25 reported in Figure 2A, shows that the variability of the measurement error is significantly 
underestimated. Some limitations of this model error are already pointed out by Facchinetti and coauthors,27 and 
thanks to the availability of four simultaneous sensor data, a new description of the components of the sensor model 
error has been proposed by Facchinetti and coauthors.28 Here a new autoregressive [AR(2)] model is identified in order 
to describe the total measurement error, including wearing issues in addition to noise and drift usually considered.

Figure 1. Estimation of measurement error ê. IG is an estimate of the SC 
glucose concentration interstitial glucose, CGM represents its measure, 
and ê is an estimate of the measurement error.

The new model can be described by

ePV(k) = a1 · ePV(k – 1) + a2 · ePV(k – 2) + v(k),

where error v(k) is a Gaussian white noise with mean mv 
and variance s2

v, parameters a1 and a2 are coefficients of 
the autoregressive model, and the distribution of the 
initial states of the process is normal with mean mis and 
variance s2

is (see Table 2).

The results obtained with the new model are presented 
in Figure 2B. Also, the mean absolute relative difference 

tS
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Figure 2. Visual predictive check representation of 10th and 90th percentiles, estimation of measurement error ê with τ variation effect (continuous 
line), and modelled error êM with different realizations (plus marker). Top panel (A) Comparison between the measurement error ê and the error 
model.25 Bottom panel (B) Comparison between the measurement error ê and the new error model.

(MARD)29 between CGM and BG obtained with the 
model (median 15%, interquartile range 13–17%) is in 
agreement with the data collected during the CAT AP@
home trial (median 12%, interquartile range 10–18%);  
it is also similar to the MARD obtained with the  
Dexcom Seven Plus by Christiansen and coauthors29 
(median 14%, interquartile range 12–20%). In order to 
use this model with other sensors, variance s2

v must be 
adapted. For example, with s2

v = 0.0141, the MARD is 11% 
with interquartile range 10–13%, similar to that of the 
Dexcom G4 (median 12.5%, interquartile range 9–16%) 
reported by Christiansen and coauthors.29

Table 2.
Values of the Autoregressive Model of the Sensor 
Noise ePV

21

Parameter Value Units

a1 1.5458 Adimensional

a2 -0.5708 Adimensional

mv 0.0017 mmol/liter

s2
v 0.0283 mmol2/liter2

mis [–0.1766 – 0.1566] mmol/liter

s2
is

0.7759  0.7895
0.7895  0.8603
⎡
⎣

⎤
⎦ mmol2/liter2

Model Predictive Control Retuning
The MPC algorithm was improved by exploiting the experience gained with the AP@home experiments. The main 
changes in the MPC2 algorithm are listed and described as follows:

1.	 refined basal/bolus reference therapy

2.	 meal bolus limitation

3.	 insulin constraint

4.	 pump shutoff avoidance

5.	 insulin variation constraint

6.	 retuning of the cost function using a new virtual population of patients and the new sensor noise model

Refined Basal/Bolus Reference Therapy
The reference value (ũ) included in the cost function was previously computed as

ũ(k) = d(k)
CR

 + ub(k).
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Here it is adapted considering also the patient’s BG concentration at the time of meal acknowledgement. Specifically, 
the correction, which is limited to percentage m of the nominal meal bolus value, is computed as

ũ(k) = d(k)
CR

 + min⎛⎝m · d(k)
CR

, 
BG – ytarget

CF
⎞
⎠ + ub(k) = ubolus (k) + ub(k)

where ytarget is the glucose reference and m is the maximum allowed meal bolus correction.

Meal Bolus Limitation
A limitation on the maximum bolus deliverable for each meal is also introduced: a maximal a% of the nominal bolus 
can be suggested to compensate for the meal. In formal terms, Equation (3) was modified as

uI(k) = [1  0  ···   0]⎛⎝–Kxx(k) + KYoYo(k) + min⎛⎝
a

100
 · ũbolus(k), – KdD(k) + KUoUo(k)⎞⎠

⎞
⎠,

Insulin Constraint
Due to the unconstrained nature of the MPC1, the finite horizon optimal solution can include negative insulin suggestions 
that obviously cannot be applied in the future. Hence the following constraint was introduced:

uII(k) = uI(k) + min⎛⎝SNi – 1

i = 1
(uI (k + i) + ub) – b

100
 ∗ ub ∗ (Ni – 1),0⎞⎠,

where Ni is the considered horizon. This formula limits the suggested insulin, allowing also the possibility to suggest at 
least a percentage b of the basal in the future. In order to limit the MPC action, the control variable was also saturated 
according to the following rule:

uIII(k) = max⎛⎝–ub(k), min⎛⎝
a

100
 · ũbolus(k) – SNv

n = 1
 i(k – n), uII(k)⎞⎠

⎞
⎠,

where i is the insulin effectively injected in the past and Nv is the considered horizon.

Pump Shutoff Avoidance
In the literature, it is widely documented that the absence of insulin delivery for a long period can lead to metabolic 
decompensation and diabetic ketoacidosis.30 However, short-interval interruption of basal insulin infusion may also 
result in risks of ketosis.31 In order to avoid these events, a new constraint was added:

uIV(k) = 
uIII(k)		     if Gp(k) < Ḡ
max(uIII(k), gub(k))  otherwise

⎧
⎨
⎩

,

where g is the guaranteed fraction of basal delivery in the future and Ḡ is a switching threshold.

Insulin Variation Constraint
Finally, data analysis showed that spikes in CGM can cause excessive reaction of the control algorithm. Hence, in order 
to avoid an increase of the suggested insulin greater than ζub, the MPC suggestion was corrected as

uMPC(k) = min(uIV(k), i(k – 1) – ub(k – 1) + ζ · ub(k)).

Meal boluses can violate this constraint.

Retuning of the Cost Function Using a New Virtual Population of Patients and the New Sensor Noise Model
Glucose profiles observed in the AP@home trials exhibited a relatively high glucose average (148.21 ± 20.42); therefore 
the glucose set point (ñy) was decreased. Moreover, the prediction horizon was shortened for embedded implementation.32 
This is possible without performance degradation in view of the terminal penalty in Equation (2) that approximates 
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the infinite horizon cost. Finally, the cost function was retuned following the procedure described by Soru and 
coauthors10 using the new virtual population23 and the sensor model described in this work.

Kalman Filter Retuning
In order to improve the predictions of the Kalman filter, a retuning of the QKF and RKF matrices, exploiting both the 
AP@home data and the new sensor error model, was implemented. QKF was set as a diagonal matrix whose entries qi 
are gathered in five homogeneous groups taking the same values (see Table 3).

Table 3.
Grouping of Covariance Matrix QKF Diagonal 
Elements qi and Their Chosen Values
Group Element Signals Value

1  q1, q2, q3 states in mg 0.1

2 q4, q5 states in mg/kg 10

3 q6, q7, q8 states in pmol/liter 0.1

4 q9, q10, q11, q12 states in pmol/kg 0.1

5 q13 state in mg/dl 10

Noise covariance matrix RKF was set equal to the variance 
of signal v(k) (described in this article) while process 
noise covariance matrix QKF was tuned by minimizing 
the sum of the prediction error defined as

Jep = (Ip – Îp) + h · (BG – BG),

where Ip is the measured plasma insulin, Îp is the plasma 
insulin estimated by the Kalman filter, BG is the 
measured plasma glucose, BG is the plasma glucose 
estimated by the Kalman filter, and h is a suitable weight. 
The optimization was performed by an exhaustive research over a grid that considered for each qi, three possible 
values: 0.1, 1, and 10. The optimal values are reported in the last column of Table 3.

Results and Discussion
This section reports the in silico comparison between the MPC1 algorithm, used in the CAT AP@home trial,10 and 
MPC2, proposed in this article, with the parameters set as follows: 

N = Ni = Nv = 4, m = 0.25, ñy = 119 mg/dl, ytarget = 115 mg/dl, a = 120, b = 50, g = 0.3, Ḡ = 140 mg/dl, ζ = 3.

The control weight q in Equation (2) is individualized using body weight, BW, and carbohydrate-to-insulin ratio as

q = e(–0.0366 ∗ BW – 0.2149 ∗ CR + 2.5444),

where the coefficients were computed through the procedure described by Soru and coauthors10 applied to 50 virtual 
patients.

Three different scenarios were evaluated: a nominal one in which all parameters were known, a sensitivity variation 
scenario where a ±25% variation was randomly applied to the insulin sensitivity of each in silico patient in order 
to represent possible uncertainty on individual insulin sensitivity, and a meal variation scenario where the ingested 
amount of carbohydrates is the nominal one multiplied by a random factor uniformly distributed in [0.5 1.5] in order  
to reproduce a possible error in meal amount calculation. Each simulation started at 06:00 and lasted 34 h. Five meals 
were administrated during the whole trial: breakfast at 07:00 (50 g), lunch at 12:00 (60g), dinner at 18:30 (80g), and 
second breakfast and second lunch equal to the previous. In all scenarios, four sensor calibrations were planned per day: 
30 min before each meal (06:30, 11:30, and 18:00) and one before the night (23:00). The comparison reported here was 
performed with the new virtual population22 composed of 100 adult patients and the sensor noise model presented in 
this work.

Differences in outcomes measures is assessed according with data distribution as reported in Table 4.

Figure 3 shows the results in terms of glucose profiles obtained with both algorithms in the nominal scenario: the glucose 
mean with MPC2 tends to the set point in the nocturnal period; moreover, lower excursions in the postprandial 
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Table 4.
Tests Used to Assert Significant Difference 
According to Data Distributiona

Data distributions

Both Gaussian At least one  
not Gaussian

Homoscedastic Two-sample t-test33

Wilcoxon rank 
sum34

Not homoscedastic
Two-sample t-test 

with Satterthwaite’s 
approximation33

a Gaussianity and homoscedasticity are addressed by the 
Lilliefors test35 and two-sample F-test,34 respectively.

periods that cause hypoglycemia phenomena with MPC1 
are reduced. MPC1 acts too aggressively after meals 
and maintains a high glucose level during the night. 
Figure 4 shows the improvement obtained with the 
new algorithm on an improved version of the classic 
control variability grid analysis (CVGA).36 This improved 
version was introduced Soru and coauthors10 by allowing 
the classic CVGA nine square zones, associated with 
different control performance, to become concentric rings 
zones ranging from A to D. Axis scales and hence subject 
position remain the same. This new CVGA removes the 
limitation that a patient could move to a better zone with 
a slight reduction of one of the coordinates even at the 

Figure 3. The figure shows for MPC1 (blue) and MPC2 (magenta) the mean (dots) and the variability (±standard deviation) of the glucose profiles 
obtained in 100 virtual patients with the nominal scenario. OL, open loop; PP, postprandial period.

cost of a substantial increase of the other one. Another feature is that all patients suffering from severe hypoglycemic or 
hyperglycemic episodes will fall in region D. For example, the subjects with minimum BG = 110 and maximum BG = 181 
and minimum BG = 95 and maximum BG = 179 are in the B and A zones, respectively, with the square zones while 
they are both in the B zone with the ring zones; on the contrary, the subjects with minimum BG = 110 and maximum 
BG = 170 and minimum BG = 95 and maximum BG = 170 are placed in different zones with the ring zones (A versus 
B zone) but not with the square ones (A versus A zone); the subjects with minimum BG = 60 and maximum BG = 181 
and minimum BG = 40 and maximum BG = 179 with the ring zones are, respectively, in the C and D zones, while 
with the square zones are in D and C zones, respectively.
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Figure 4. The CVGA representing the results obtained using MPC1 (blue) 
and MPC2 (magenta) on the nominal scenario. Each point represents 
the coordinates (x is a function of the minimal glucose value and y a 
function of the maximal value) associated with a single patient.

The same considerations can be deduced from the analysis 
of the glucose profile obtained with the sensitivity 
variation scenario (see Figure 5) and the meals variation 
scenario (see Figure 6). From the CVGA representation 
with the sensitivity variation scenario (Figure 7), it is 
apparent that the MPC2 reduces the number of patients 
in the D zone by approximately 50%, increasing those in 
the B zone; the number of patients in the A zone remains 
almost unchanged.

The CVGA representation with the meals variation scenario 
(Figure 8) shows that the MPC2 doubles the number of 
patients in the A zone, increases those in the B zone and 
reduces the number of patients in the C and D zones; in 
particular, it was reduced by 73% in the D zone.

Tables 5 and 6 gather the performance indexes of all  
algorithms for the nominal and the robustness scenarios, 
respectively. MPC2 lowers the mean glucose and increases 
the time spent in tight target in all the considered 
scenarios, especially during the night (p < .01); reduces 
the time spent below 70 mg/dl in nominal (p < .001) and 
meal variation (p < .01) scenarios; and always reduces 
the time spent below 50 mg/dl (p < .04). Moreover, the 

Figure 5. The figure shows for MPC1 (blue) and MPC2 (magenta) the mean (dots) and the variability (±standard deviation) of the glucose profiles 
obtained in 100 virtual patients with the sensitivity variation scenario. OL, open loop; PP, postprandial period.
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Figure 6. The figure shows for MPC1 (blue) and MPC2 (magenta) the mean (dots) and the variability (±standard deviation) of the glucose profiles 
obtained in 100 virtual patients with the meal variation scenario. OL, open loop; PP, postprandial period.

Figure 7. The CVGA representing the results obtained using MPC1 
(blue) and MPC2 (magenta) on the sensitivity variation scenario. 
Each point represents the coordinates (x is a function of the minimal 
glucose value and y a function of the maximal value) associated with 
a single patient.

Figure 8. The CVGA representing the results obtained using MPC1 
(blue) and MPC2 (magenta) on the meals variation scenario. Each 
point represents the coordinates (x is a function of the minimal 
glucose value and y a function of the maximal value) associated with 
a single patient.
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Table 5.
Results Obtained Simulating Strategies MPC1 and MPC2 on the Nominal Scenarioa

Nominal scenario

O N PP

M (mg/dl)

MPC1 140.74 124.42 156.30

MPC2 139.57 115.96b 157.78

p value 0.16 8.51·10-8 0.70

SD (mg/dl)

MPC1 28.63 13.07 26.02

MPC2 27.41 9.35b 24.55

p value 0.20 1.28·10-5 0.10

Tt (%)

MPC1 86.33 99.02 76.22

MPC2 87.64 99.81 77.22

p value 0.08 0.05 0.34

Ttt (%)

MPC1 52.69 82.07 32.02

MPC2 59.01c 94.69b 32.54

p value 3.33·10-3 2.53·10-6 0.82

Ta (%)

MPC1 12.45 0.78 23.18

MPC2 12.31 0.19 22.78

p value 0.37 0.24 0.54

Tb (%)

MPC1 1.23 0.20 0.60

MPC2 0.05b 0.00 0.00c

p value 4.70·10-4 0.08 1.23·10-3

Th (%)

MPC1 0.49 0.01 0.26

MPC2 0.00c 0.00 0.00d

p value 7.31·10-3 0.32 0.04
a O is overall, N is night, PP is the mean relative to all postprandial periods; M is the mean of the BG (mg/dl); SD is the standard deviation of 

the BG (mg/dl); Tt is the percentage of time spent in euglycemic target (70–180 mg/dl); Ttt is the percentage of time spent in tight target 
(80–140 mg/dl); Ta is the percentage of time spent above 180 mg/dl; Tb is the percentage of time spent below 70 mg/dl; and  
Th is the percentage of time spent below 50 (mg/dl).

b p < .001.
c p < .01.
d p < .05.

glucose standard deviations are always lowered, especially during the night (p < .003). Note that during the night, the 
mean glucose is almost equal to the target, and the increase of the time below 70 mg/dl in the sensitivity variation 
scenario is negligible (p > .78). In the meal variations scenario, as reported in Table  6, the time in target is almost 
100% combined with a decrease of the time below 70 mg/dl (p < .06); a negligible increase of the mean glucose (p > .51) 
and the time above 180 mg/dl (p > .68) is detected in the postprandial period.

Conclusions
The new MPC controller proposed in this article is an evolution of the algorithm presented by Soru and coauthors10 
that was used during the CAT AP@home trial.21 The new MPC incorporates clinical experience included in the 
collected data and also some clinical knowledge that is very critical to develop an artificial pancreas ready for long-term 
outpatient experiments. In silico results are very promising in terms of mean glucose, time in target, and number of 
patients in the critical zone of the CVGA. This algorithm, complemented with the SSM,22 has been implemented on the 
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Table 6.
Results Obtained Simulating Strategies MPC1 and MPC2 on the Sensitivity Variation and the Meal Variation 
Scenariosa

Sensitivity variation scenario Meals variation scenario

O N PP O N PP

M
(mg/dl)

MPC1 143.08 125.71 158.50 139.79 124.23 157.05

MPC2 142.38 118.49b 160.50 140.07 116.03b 159.66

p value 0.82 9.08·10-5 0.62 0.56 1.54·10-7 0.51

SD
(mg/dl)

MPC1 29.90 13.03 27.08 35.87 13.34 38.35

MPC2 28.63 10.29c 25.55 35.18 9.59b 37.53

p value 0.30 2.09·10-3 0.24 0.46 6.97·10-6 0.41

Tt (%)

MPC1 81.75 98.66 70.02 83.89 98.92 71.74

MPC2 83.06 98.68 71.71 84.54 99.66d 71.93

p value 0.23 0.35 0.49 0.28 0.04 0.88

Ttt (%)

MPC1 47.81 79.58 28.84 56.91 81.89 39.82

MPC2 50.65 88.55c 29.25 62.52 94.86b 40.69

p value 0.30 9.30·10-3 0.91 0.01 1.63·10-6 0.76

Ta (%)

MPC1 15.58 1.06 27.66 13.97 0.83 26.76

MPC2 15.58 0.55 27.54 14.84 0.24 27.57

p value 0.59 0.30 0.86 0.84 0.30 0.69

Tb (%)

MPC1 2.69 0.30 2.31 2.12 0.25 1.49

MPC2 1.38 0.78 0.74 0.61c 0.1 0.49d

p value 0.16 0.78 0.06 1.93·10-3 0.06 0.01

Th (%)

MPC1 1.27 0.00 1.25 0.76 0.01 0.62

MPC2 0.40d 0.09 0.23 0.12c 0 0.19

p value 0.04 0.32 0.17 7.62·10-3 0.32 0.07
a O is overall, N is night, PP is the mean relative to all postprandial periods; M is the mean of the BG (mg/dl); SD is the standard deviation of 

the BG (mg/dl); Tt is the percentage of time spent in euglycemic target (70–180 mg/dl); Ttt is the percentage of time spent in tight target 
(80–140 mg/dl); Ta is the percentage of time spent above 180 mg/dl; Tb is the percentage of time spent below 70 mg/dl;  
and Th is the percentage of time spent below 50 mg/dl.

b p < .001.
c p < .01.
d p < .05.

Diabetes Assistant37 and tested in an outpatient trial,38 following the first outpatient studies,39,40 which implemented a 
simpler hypo–hyper mitigation system always complemented with the SSM.22
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