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Abstract

Background:
Algorithms for closed-loop insulin delivery can be designed and tuned empirically; however, a metabolic model  
that is predictive of clinical study results can potentially accelerate the process.

Methods:
Using data from a previously conducted closed-loop insulin delivery study, existing models of meal  
carbohydrate appearance, insulin pharmacokinetics, and the effect on glucose metabolism were identified for each 
of the 10 subjects studied. Insulin’s effects to increase glucose uptake and decrease endogenous glucose 
production were described by the Bergman minimal model, and compartmental models were used to 
describe the pharmacokinetics of subcutaneous insulin absorption and glucose appearance following meals.  
The composite model, comprised of only five equations and eight parameters, was identified with and  
without intraday variance in insulin sensitivity (SI), glucose effectiveness at zero insulin (GEZI), and  
endogenous glucose production (EGP) at zero insulin.

Results:
Substantial intraday variation in SI, GEZI and EGP was observed in 7 of 10 subjects (root mean square error  
in model fit greater than 25 mg/dl with fixed parameters and nadir and/or peak glucose levels differing more than  
25 mg/dl from model predictions). With intraday variation in these three parameters, plasma glucose and 
insulin were well fit by the model (R2 = 0.933 ± 0.00971 [mean ± standard error of the mean] ranging from 
0.879–0.974 for glucose; R2 = 0.879 ± 0.0151, range 0.819–0.972 for insulin). Once subject parameters were 
identified, the original study could be reconstructed using only the initial glucose value and basal insulin rate  
at the time closed loop was initiated together with meal carbohydrate information (glucose, R2 = 0.900 ± 0.015; 
insulin delivery, R2 = 0.640 ± 0.034; and insulin concentration, R2 = 0.717 ± 0.041).

Conclusion:
Metabolic models used in developing and comparing closed-loop insulin delivery algorithms will need to 
explicitly describe intraday variation in metabolic parameters, but the model itself need not be comprised by a 
large number of compartments or differential equations.
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Introduction

Open-loop glucose control using either continuous 
subcutaneous (SC) insulin infusion or multiple insulin 
injections, with or without continuous glucose monitoring 
(CGM), results in less-than-optimal glucose control in 
many individuals with diabetes mellitus.1 Changing physio-
logical conditions during the day or between days 
together with an inability of individuals to accurately 
estimate carbohydrate intake can result in undesired 
glucose excursions that might be avoided with a closed-
loop system. However, limitations exist in designing 
closed-loop algorithms based on clinical studies alone. 
Clinical studies take substantial resources to perform, 
limiting the number of subjects that can be enrolled 
and the total time each subject is studied. Changing 
controller design based purely on empirical results may 
require numerous clinical iterations before satisfactory 
results are obtained, and closed-loop studies performed 
with no a priori knowledge of the controller’s expected  
behavior may introduce unnecessary risk to the patient. 
A mathematical model of glucose metabolism can 
potentially accelerate the process, provided the model 
can predict results from changes in controller design 
or tuning. Numerous models exist in the literature for 
simulating glucose profiles,2 but the models do not 
typically describe intraday or interday variance in the 
patient metabolic profile. Most models have not been 
identified specifically using data from individuals with 
type 1 diabetes.3

One approach to modeling is to “clone” subjects previously 
 studied under closed-loop insulin delivery. This approach 
has been used previously to evaluate control algorithm 
for intravenous insulin delivery in the intensive care 
unit.4 Obtaining model parameters from closed-loop 
data acquired over a 24 h period can potentially allow 
intraday variance to be quantified. Closed-loop data are 
ideally suited for identifying parameters in that frequent 
blood samples are available for measuring plasma 
glucose and insulin levels, insulin delivery rates vary 
substantially through the day (persistent excitation), and 
meal carbohydrate intake can be accurately determined 
by trained dieticians. Subjects identified from closed-loop 
data should allow model simulations to be performed, 
evaluating new control strategies and the results compared 
with the original clinical results. Ideally, the results from 
such simulations would be validated in new clinical 
studies on either the same subjects or on subjects 
independent from those used to identify the model.  
The initial step requires model parameters to be identified 

on a fixed number of subjects, and this is the focus of 
the present study.

Methods

Patient Characteristics and Data
Data from a previous closed-loop study conducted in  
10 adults with type 1 diabetes mellitus were used to 
identify a composite metabolic model. Details of the  
study have been published;5 however, in brief, 10 subjects 
were studied (8 females, 2 males, mean [± standard 
deviation] aged 42.5 ± 11.5 years, duration of diabetes  
18.0 ± 13.5 years) under closed-loop control for 
approximately 28 h. Blood samples were taken approximately 
every 20 min for measurement of plasma insulin and 
glucose. A proportional-integral-derivative (PID) model 
of the β cell6 was used with the Medtronic MiniMed 
SC glucose sensor and insulin pump to effect closed-
loop control on a minute-to-minute sample interval.  
The content and the amount of ingested carbohydrates 
was determined and logged by a trained dietician at the 
time of the study. Breakfast, lunch, dinner, and a late-night 
snack were given on day 1 followed by breakfast on day 2. 
Carbohydrate consumed at times other than scheduled 
meals were in response to blood glucose < 60 mg/dl or 
hypoglycemic symptoms, with juice denoted by †.

Medtronic Virtual Patient model formulation
Metabolic models describing the pharmacokinetic (PK) 
pharmacodynamic (PD) response of SC insulin, glucose 
appearance following meals (Ra), and the effect of insulin  
to lower blood glucose were used. For the PK/PD response, 
an identifiable realization of the three-compartment model 
originally studied by Insel and colleagues7 was used to 
describe plasma insulin concentration (Ip) in response 
to SC insulin delivery [ID; Equations (1)–(3)]. Insulin effect 
(IEFF) was coupled with the Bergman minimal model8 
[Equations (3) and (4), with Equation (3) overlapping 
the Sherwin model] and a two-compartment model of 
glucose appearance following a meal (RA) was chosen 
[Equation (5)] based on the work by Hovorka and 
associates.4,9,10 Together, the five model equations form 
the basis of the Medtronic Virtual Patient (MVP) simulator 
used for educating and training individuals with type 1 
diabetes:11

           (1)
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Parameter Estimation
Equations (1)–(3) and (5) were transformed to a discrete 
form using Z transforms.14 The bilinear equation 
describing insulin’s effect on glucose [Equation (4)]  
has no exact Z transform and was transformed to the 
discrete 1 min sample interval using a first forward 
difference derivative approximation. Parameter identification 
and model simulations were performed using MATLAB 
version 6.5 (Mathworks Inc., Natick, MA) together 
with a custom graphical user interface designed with  
LabView 6.1 (National Instruments, Austin, TX). 
Marquardt–Levenberg and Nelder–Mead nonlinear least 
squares fitting algorithms were used to minimize the sum 
squared error between the model and measured plasma 
insulin and glucose concentrations. For Equations (1) 
and (2), which have interchangeable time constants,  
the larger time constant was assigned to τ1 and the 
smaller time constant was assigned to τ2. Subject data 
were fit individually, with individual fits averaged. 
Identification and model validation was performed in 
four steps:

Step 1: The known insulin delivery rates were used to estimate 
parameters of the insulin PK model. Parameters τ1, τ2, and CI 
were identified in each of the 10 subjects by minimizing 
the sum square error (SSE) between the model predicted 
plasma insulin concentration (Ip) and the measured 
concentration. Insulin delivery, which was composed of 
a series of discrete boluses in the original study5 (each 
bolus being an integer multiple of 0.1 U), was obtained 
from pump downloads.5 Sum square error for the two-
compartment PK model was then compared with SSE 
for the three-compartment model [Equations (6)–(8)] 
with improvement in fit evaluated using the sequential 
F test.13

Step 2: The measured plasma insulin profile and known 
meal carbohydrate content was used to identify p2, GEZI, SI,  
EGP, VG, and τm. Plasma insulin concentration was 
interpolated on a 1 min interval and used as input 
to Equation (3) and carbohydrate content input to  
Equation (6). Parameters p2, GEZI, SI, EGP, VG, and τm  
were then estimated by minimizing the difference 
between the plasma glucose and model prediction 
[G; Equation (4)]. Minimization was first performed 
assuming no intraday variation in any parameter and 
identical time constants for the two-compartment meal 
model [Equation (5)]. Fits were repeated with the meal 
model in which the two meal time constants were 
allowed to be different [Equation (9)], and improvement 
in fit was evaluated using the sequential F test.13

            (2)

       (3)

    (4)

                 (5)

The MVP model has eight identifiable parameters: τ1 and 
τ2 are time constants associated with insulin movement 
between the SC delivery site and plasma (time constants 
relate to the more familiar concept of a single process 
half-time T1/2 by a factor 0.693); CI is insulin clearance 
(ml/min); 1/p2 characterizes the delay in insulin action 
following an increase in plasma insulin; SI denotes 
insulin sensitivity; GEZI characterizes the effect of 
glucose per se to increase glucose uptake into cells and 
lower endogenous glucose production at zero insulin;12 
EGP is the endogenous glucose production rate that 
would be estimated at zero insulin; and VG is related to 
the distribution volume in which glucose equilibrates.  
In the meal Equation (5), CH is the amount of 
carbohydrate consumed at different times of the day and 
τm defines the peak time of absorption.

Two modifications to the model were tested. First, the 
two-compartment PK model [Equations (1) and (2)] was 
compared with a three-compartment model:

            (6)

            (7)

             (8)

Second, the two-compartment meal model with equal time 
constants [Equation (5)] was compared with a similar 
two-compartment model with unequal time constants 
τM1 and τM2:

         (9)

Comparisons were performed with sequential F tests13 
with p < .05 considered significant.
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Step 3: Model fits were evaluated, and if deemed to be 
inadequate, intraday variation was introduced. Each fit from 
the procedures in step 2 was assessed for adequacy 
according to three criteria: (1) root mean square 
difference between the fitted glucose profile and the 
measured plasma glucose profile was required to be less 
than 25 mg/dl, (2) peak postprandial glucose and the 
peak model predicted glucose were required be within  
25 mg/dl following each meal with the peak values 
needing to be within 0.5 h of each other, and  
(3) nadir glucose for excursions of plasma glucose below  
80 mg/dl were required to be predicted by the model  
to within 15 mg/dl, with the nadirs occurring within  
0.5 h of each other. If the fitted profile failed to meet  
any of these three criteria, the fit was repeated but  
with SI, GEZI, and EGP allowed to vary in three windows. 
The parameters of windows 1 and 3 were constrained  
to have equal values such that each parameter could have 
only two values during a 24 h period (diurnal variation).  
Start and end times of window 2 were identified by 
nonlinear least squares with the times chosen to minimize 
the SSE in all three windows. If the introduction of 
diurnal variation in any of one the three parameters did 
not significantly contribute to the improvement of SSE in 
window 2 (designated by the F test13), then that parameter 
was constrained to equal the value in windows 1 and 3 
and the remaining parameters allowed to vary.

Step 4: Validation of model simulations. Once metabolic 
parameters for each subject were identified, the entire 
closed-loop study was reconstructed using the original 
control equations together with a previously published 
model of the SC glucose sensing15,16 with 10 min (τSEN)  
SC interstitial fluid (ISF) delay:15,16

      (10)

Digital filters used in the original study to smooth the 
sensor signal (seven-point finite impulse response filter 
with 3 cycles/hour cutoff) and estimate the rate of change 
of glucose (slope of the sensor signal over the previous 
15 min) were also included to reproduce as closely as 
possible all conditions under which the original study5 
was performed (a process sometimes referred to as putting 
the hardware in the loop17). With experimental conditions 
in place, plasma glucose, insulin delivery, and insulin 
concentration were simulated using only the glucose 
concentration and the basal insulin delivery rate at the 
time closed loop was initiated. The simulated results  
(10 individual profiles) were then compared to the clinical 
study data using R2 and mean absolute difference (MAD). 

Statistics were performed either with GraphPad Prism 
version 5.00 for Windows (GraphPad Software, San Diego, 
CA) or MATLAB version 6.5. Data are reported as mean 
± standard error of the mean unless otherwise noted.

Results
Step 1: Plasma insulin concentration was well described 
by the two-compartment PK insulin model [Equations (1)  
and (2)] with average correlation (R2) equal to 0.879 ± 
0.0151 (range 0.819 to 0.972) and MAD 4.20 ± 1.15 µU/ml  
(Figure 1B, with plasma and sensor glucose from 
the original study shown in Figure 1A). Time delays 
associated with insulin appearance in plasma were 
estimated to be 70.5 ± 8.8 and 44.6 ± 6.4 min (Table 1). 
Repeating the analysis with the three-compartment PK 
model [Equations (6)–(8)] resulted in significantly better 
plasma insulin fits in 2 of the 10 subjects (F test; p < .05; 
data not shown).

Figure 1. Average profile of all 10 subjects. (A) Closed-loop plasma 
glucose (closed circles ± standard error) and sensor (solid curve;  
SEM not shown) observed in the adults studied under closed-loop 
PID insulin delivery.5 (B) Plasma insulin concentrations (closed  
circles ± standard error) and fitted PK insulin model (solid curve;  
SEM not shown) using the experimentally obtained insulin delivery 
profile (shaded area) as input to Equation (1). Profiles were fit 
individually and then averaged.

Step 2: Fitting the plasma glucose profile with the equal 
time constant meal model [Equation (6)] and no intraday 
variation in SI, GEZI, or EGP resulted in acceptable fits 
in only 3 of the 10 subjects (Figure 2A). Fits deemed 
acceptable were not completely free of residuals (Figure 2A 
meal response at hour 13) but passed the criteria that 
the overall root mean square error be <25 mg/dl (root 
mean square error = 21.1 mg/dl) and the criteria that 
the peak postprandial glucose be within 25  mg/dl and 
all nadir glucose values below 80 mg/dl be predicted by 
the model to within 15 mg/dl, with the predicted time of 
peak or nadir being within 0.5 h of the experimentally 
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Table 1.
Estimated Virtual Patient Model Parameters Based on Known Insulin Delivery Rates and Measured Plasma 
Insulin Concentrations.

Subject
Body 

weight
(kg)

Total daily 
insulin
(U/day)

CI

 (ml/min)
τ1

(min)
τ2

(min)
VG

(dl)
p2

(min-1)
Window Start End

EGP
(mg/dl/min)

GEZI
(min-1)

SI

 (ml/μU)

1 89 50 2010 49 47 253 1.06 10-2 1,3 1.33 2.20 10-3 8.11 10-4

2 22:00 4:00 1.4 3.87 10-8 4.93 10-4

2 63 43 1281 41 10 261 1.16 10-2 1,2,3 0.6 4.38 10-3 9.64 10-5

3 65 30 909 71 70 199 2.33 10-2 1,3 1.07 3.50 10-3 4.63 10-4

2 3:00 10:00 0.856 3.50 10-3 1.70 10-4

4 116 65 1813 91 70 337 8.14 10-3 1,3 0.98 1.64 10-5 3.77 10-4

2 18:00 0:00 2.59 7.58 10-8 3.77 10-4

5 64 42 1535 46 46 188 9.63 10-3 1,2,3 0.6 4.33 10-3 2.05 10-4

6 51 21 588 68 30 104 9.15 10-3 1,3 0.603 1.01 10-3 4.12 10-4

2 18:00 4:00 0.603 3.79 10-3 9.48 10-4

7 77 40 1806 60 60 263 1.01 10-2 1,2,3 1.11 2.30 10-3 8.16 10-4

8 65 30 540 95 37 137 1.03 10-2 1,3 1.3 1.00 10-8 3.68 10-4

2 18:00 23:25 0.601 1.00 10-8 5.40 10-4

9 100 50 875 131 21 193 1.03 10-2 1,3 1.27 6.39 10-3 2.56 10-4

2 13:00 22:00 3.45 6.39 10-3 6.89 10-4

10 64 34 1309 53 53 204 1.02 10-2 1,3 0.611 1.04 10-3 6.03 10-4

2 0:00 4:43 0.611 1.04 10-3 1.73 10-3

observed time. As described in Methods, the glucose profile 
was fit using measured plasma insulin profiles (closed 
circles in Figure 2B) rather than model-predicted curves 
obtained from the insulin PK model identified in step 1 
(solid curve in Figure 2B) to avoid carrying over any 
model error associated with the insulin model. For the 
subject shown, the model underestimated the insulin 
response to the meal at hour 8 and overestimated the 
response to the meal at hour 22 (Figure 2B, black curve); 
however, the correlation was reasonable (R2 = 0.854). 
Exogenous glucose appearance peaked within 10–34 min  
of each meal (Table 2, subject 7) with the appearance 
curve shown Figure 2C.

Step 3: Seven of the 10 subjects failed to meet one of 
the three fit criteria and were deemed to have intraday 
variation in their metabolic profiles. An example subject 
(Figure 3, subject 8) showed good model fits for meals 
at hours 8 and 13 (peak postprandial meal and model 
not different by more than 15 mg/dl) but failed to follow 
the meal at hour 18 (no postprandial peak and a nadir 
error of 34 mg/dl, failing both criteria 2 and criteria 3). 
Allowing intraday variation in metabolic parameters 

Figure 2. Identification of a subject where no intraday variation was 
necessary to fit the glucose profile (subject 7). (A) Plasma glucose 
concentration (solid circles) and model fit (solid curve) showing peak 
postprandial and nadir glucose for glucose below 80 mg/dl within 
15 mg/dl and each occurring with 0.5 h of each other. (B) Proportional-
integral-derivative insulin delivery profile (shaded region) and 
measured insulin concentration5 (solid circles) with model insulin 
profile (solid curve). (C) Carbohydrates intake (bars, left axis) with 
model [Equation (5)] estimated exogenous glucose appearance (solid  
curve with shading, right axis).
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produced acceptable fits (Figure 3C) by increasing SI 
and endogenous glucose production decreasing between 
18:00 and 23:25 h (Table 1). Fit was again based on the 
measured plasma insulin (Figure 3E, closed circles) 
rather than model fit (Figure 3E, solid curve), which 
showed minor errors in the rise following meals at hours 
19 and 31 and an underestimation of peak insulin during 
breakfast on day 2.

The 10 individual model-predicted glucose profiles, 3 
identified without intraday variation like the one shown  
in Figure 2 and 7 identified with intraday variation like 
the one shown in Figure 3, fit their respective measured 
plasma glucose profiles well. Correlation coefficients 
ranging from 0.879 to 0.974 (R2 = 0.933 ± 0.00971) with 
MAD 11.51 ± 2.93 mg/dl (parameters in Tables 1 and 2; 
average of the individual fits shown in Figure 4A, solid 
curve). No significant improvement in fit was obtained 
when the two meal time constants were allowed to 

be unequal [equation (9); data not shown]. Peak meal 
absorption times tended to be fastest at breakfast, with 
increasingly longer times observed for lunch, dinner, and 
snack (47 ± 5, 55 ± 6, 74 ± 19, and 78 ± 17 min analysis 
of variance; Table 2), although this did not achieve 
statistical significance. Supplemental carbohydrate, 
however, peaked significantly faster (31 ± 10 min; p < .05,  
analysis of variance), with juice typically peaking within 
10–15 min (Table 2, pure juice indicated by †).

Step 4: The entire study was simulated using only the 
conditions at the time closed-loop control was initiated 
and the meal carbohydrate information. Coupling the 
MVP model with a model describing SC glucose sensor 
delay [Equation (10)] and the PID algorithm used in 
the original clinical study5 produced plasma glucose  
(Figure 4A dashed curve; R2 = 0.900 ± 0.015, ranging from 
0.816 to 0.961), insulin delivery (Figure 4B; R2 = 0.640 ± 
0.034, range 0.448 to 0.767), and insulin concentration 

Figure 3. Identification of a subject where intraday variation in model 
parameters was necessary to adequately fit plasma glucose (subject 8).  
(A) Glucose profile fit without intraday variation. (B) Meal glucose 
appearance identified without intraday variance. (C) Glucose profile fit 
with an increase in insulin sensitivity (SI) and decrease in endogenous 
glucose production (EGP) during window 2. (D) Meal glucose 
appearance identified with intraday variance. (E) Proportional-integral-
derivative insulin delivery profile (shaded region) and measured 
insulin concentration (solid circles) obtained from the original study data5 
together with the fitted plasma insulin profile (solid curve).

Figure 4. Average fit (solid curve) and simulated (dashed curve)  
profiles of all 10 subjects. Profiles were fit and simulated individually  
and then averaged. (A) Plasma glucose (circles ± standard error), 
model fit (solid curve; standard error bars not shown) using measured 
plasma insulin concentrations, and closed-loop model simulation 
(dashed curve; standard error bars not shown) results. (B) Insulin 
delivery obtained from the original closed-loop study5 with shaded  
area indicating the 95% confidence interval for the mean, together 
with the simulated profile (solid curve; standard error bars not  
shown) using the MVP model [Equations (1)–(5)] and PID algorithm. 
(C) Plasma insulin (circles ± standard error) obtained in the original 
study with model fit using the measured insulin delivery (solid curve;  
standard error not shown) and simulated values using only the initial 
conditions at the time closed loop was started (dashed curve; standard 
error not shown).



1053

Identification of Intraday Metabolic Profiles during Closed-Loop Glucose Control in Individuals with Type 1 Diabetes Kanderian

www.journalofdst.orgJ Diabetes Sci Technol Vol 3, Issue 5, September 2009

(Figure 4C, dashed curve; R2 = 0.717 ± 0.041, range 
0.558 to 0.880) responses nearly identical to those of the 
original study despite no knowledge of experimental 
data other than the glucose concentration and basal 
insulin rate at the time closed loop was initiated and 
the amount of carbohydrates consumed at each meal. 
Mean absolute difference for the simulated profiles was  

16.2 ± 1.6 mg/dl, 1.04 ± 0.148 U/h, and 6.973 ±  
0.435 μU/ml for glucose, insulin delivery, and insulin 
concentration, respectively, with the simulated profiles 
virtually overlaying the profiles obtained using the 
known insulin delivery rates and measured plasma 
insulin concentrations (Figure 4, dashed and solid 
curves).

Table 2.
Carbohydrate Consumed in the Proportional-Integral-Derivative Closed-Loop Study5 Used in Identifying  
the Virtual Patient Modela

Subject Breakfast Lunch Dinner Snack Breakfast

1 Time 8:00 11:30 13:15 18:00 22:00 32:00

Carbohydrates (g) 72 36 131 51 70 72

τM (min) 47 21 52 24 60 39

2 Time 8:00 13:00 18:00 32:00

Carbohydrates (g) 8 140 18 20

τM (min) 107 84 231 12

3 Time 8:00 11:40 12:40 13:15 18:00 22:00 32:00

Carbohydrates (g) 55 36 15 84 90 44 54

τM (min) 60 107 82†† 79 76 131 66

4 Time 8:00 12:30 13:00 16:45 18:00 22:00 25:45 32:00

Carbohydrates (g) 68 15† 129 20† 98 27 43 100

τM (min) 45 16 30 14 65 144 45 103

5 Time 8:00 12:00 13:00 18:00 22:00 32:00

Carbohydrates (g) 49 5† 51 56 70 49

τM (min) 39 10 37 35 68 30

6 Time 8:00 13:00 18:00 22:00 32:00

Carbohydrates (g) 20 54 63 48 24

τM (min) 27 62 68 150 27

7 Time 8:00 11:48 13:45 18:00 22:00 32:00 36:12

Carbohydrates (g) 81 15† 102 101 73 81 15†

τM (min) 32 10 34 25 32 32 10

8 Time 8:00 13:00 18:00 22:00 32:00

Carbohydrates (g) 28 71 52 14 35

τM (min) 27 73 72 47 66

9 Time 8:00 13:00 18:00 22.00 32:15

Carbohydrates  (g) 76 37 101 54 76

τM (min) 46 46 58 38 51

10 Time 8:00 11:45 13:00 18:00 25:48 28:30 32:00

Carbohydrates (g) 40 14† 80 61 56 14† 40

τM (min) 31 16 57 83 31 10 44

a Breakfast, lunch, and dinner were scheduled at 8:00, 13:00, 18:00, and 22:00 (actual times given in table) expressed as the elapsed time 
from midnight of day 1 of the study period. Carbohydrate consumed at times other than scheduled meals were in response to blood glucose 
< 60 mg/dl or hypoglycemic symptoms, with juice denoted by † (†† excluded for analysis, as juice and meal could not be resolved as 
separate components). Subject 2 requested not to consume carbohydrates for most meals (followed Atkins low carbohydrate diet).
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Discussion
Results from the present study demonstrate that a low-order 
PK/PD insulin model can be combined with a low-order 
model describing glucose appearance following meals 
and a single compartment model of glucose distribution 
to yield an identifiable composite model capable of 
reproducing clinical closed-loop study results. The composite 
model, composed of only five equations with eight 
identifiable parameters, reproduced approximately 90% 
of the observed dynamics in glucose concentration per se  
(Figure 4; insulin delivery and insulin concentration 
reconstructed with model equations). Although none 
of the submodels used in the MVP model are new, the 
present study is the first to combine them into a single 
model and identify parameters from data in subjects with 
type 1 diabetes and identify changes in parameters over 
a 24 h period. We believe—as do many others3—that 
understanding how the parameters change during the 
day will be an important consideration when developing 
new closed-loop insulin delivery algorithms.

Although results in the present study establish the MVP 
model11 as an identifiable model capable of reproducing 
prior closed-loop study results,5 they do not fully 
validate the model as a simulation tool. Using the model  
as a simulation tool will require model validation 
against clinical results obtained independent from those 
used during model development and identification.  
For example, the clinical study results in which the  
PID algorithm was modified to include a meal bolus18 
should be reasonably reproducible with only minor 
differences being attributed to the difference between 
adult5 and pediatric18 patient populations. Further validation 
would be to optimize control parameters for patients 
previously identified under closed loop and demonstrate  
in a subsequent clinical study, on the same subjects, that 
the optimization improves control performance.

Components of the MVP model [Equations (1)–(5)] have 
all been taken from existing literature—with the insulin 
PK/PD model first advocated by Sherwin and colleagues19 
in 1974, the Bergman minimal model dominating clinical 
assessment of insulin sensitivity since 1979,20 and the 
meal model taken almost verbatim from work by Hovorka 
and associates.9 Nonetheless, many higher-order models 
exist to describe in greater detail metabolic fluxes specific to 
different tissues and to separate out subtle differences in 
the time course of insulin’s effect to increase glucose 
uptake and decrease endogenous glucose production.  
The complete model proposed by Hovorka and 
coworkers,9,10 from which the meal subcomponent used 

here [Equation (5)] was taken, uses higher-order model 
components for both glucose and insulin, as does the 
model proposed by Kovatchev and colleagues21 and 
approved by the Food and Drug Administration for 
preclinical testing of control algorithms. Noteworthy is 
that many different metabolic models exist, including, 
but not limited to, the model originally proposed by 
Sorenson22 in 1985, the Karlsburg Diabetes Management 
System developed in Karlsburg to aid in optimizing 
open-loop insulin therapy,23–25 the Internet AIDA simulator 
developed by Lehmann and associates26,27 as an 
educational tool, and models that have been developed 
by Chase and coworkers28,29 and Van Herpe and 
colleagues30,31 for aid in developing critical care insulin 
delivery algorithms. Virtually all the models are higher 
order than the MVP model; however, in most cases,  
they do not explicitly address intraday or interday 
variance of model parameters. Variation in these 
parameters creates a requirement for different basal 
insulin rates throughout the day and potentially between 
days. The change in insulin requirement is important 
for closed-loop simulation studies insofar as different 
classes of controllers exist that can be shown to correct 
for a change in control output absent any change in the 
variable being controlled32 (e.g., compensate for decrease 
in insulin sensitivity with an increase in insulin delivery  
not driven by any change in fasting glucose,2 which 
should remain at target).

The existence of so many different models raises the 
question of whether model comparisons of different 
control algorithms depends on the choice of model or, 
more importantly, whether model-derived preclinical 
safety analysis depends on the choice of model. It is 
possible that all the different models—seven if one were 
to just consider those referenced in this article4,11,21,24,27,28,30—
will produce results sufficiently similar to generate 
substantially the same conclusions. If this is true, an 
argument could be made for using the simplest model. 
More likely, however, is that the differences among 
models are sufficient to generate different conclusions 
regarding both the type of controller that should be 
implemented and how safe it is. If the latter is true,  
the importance of validating model-based conclusions 
with clinical studies where the safety of the subject is 
ensured by monitoring the patient per se will become 
increasingly important.

Generally, the use of higher-order model terms, or 
more equations, should improve the ability to describe 
differences in the time course of insulin action in different 
tissues (e.g., liver, muscle, and fat); however, the use of 
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high-order terms increases the number of parameters 
to be identified. In some cases, the models may require 
the addition of multiple glucose tracers,33–35 and in 
other cases, certain model configurations may produce 
states that are near unobservable.32 Many advocates of 
metabolic modeling3 argue that these models should be 
reserved for simulation purposes only, with lower-order 
models acceptable for use in a control algorithm per se. 
However, if the “simulation” and “control” models differ, 
understanding the relationship between the two may 
still be important. Open-loop predictions obtained with 
the two models should be expected to have a correlation 
less than 1, as R2 = 1 would mean the higher-order terms 
contribute nothing to the dynamic response. However, 
the two models should also be expected to have a 
sufficiently high correlation to effect improvements in 
model-based control algorithms. It is not clear what the 
threshold correlation needs to be to affect improvements 
in control or to what extend the unexplained variance  
(1 - R2) should be attributed to inconsistencies in model 
order versus inconsistencies in model parameters. 
Differences in how the unexplained variance is attributed 
can substantially impact closed-loop stability analysis  
(a full discussion of the relationship between model order 
and closed-loop stability requires root-locos analysis32 
and is beyond the scope of this article).

In the present study, evidence supporting a higher-order  
PK insulin model was found in only 2 of 10 subjects. 
Using the lower-order two-compartment model produced 
fits with R2 ranging from 0.819 to 0.972, suggesting little 
room for improvement given that some of the variance 
can be attributed to errors in blood sample times, error 
in the insulin assay, or errors associated with removing 
small air bubbles trapped in the insulin syringe. It is 
possible that the present study lacked statistical power to 
identify the higher-order terms. If this is the case, testing 
the PK/PD model order using conditions in which the 
glucose concentration does not change36,37 may offer 
a more powerful method to detect high-order PK/PD 
terms. Generally, metabolic models should fit and/or 
predict not only the data they were identified on, but 
other experimental conditions such as clamps specifically 
designed to elucidate insulin PK/PD profiles,36–38 
different meal responses,39–41 and interruptions of insulin 
delivery.42 A more detailed modeling analysis of these 
types of studies may provide further insight into the 
need for higher-order PK/PD model terms.

Although high-order model terms were not required to 
fit the closed-loop data evaluated here, changes in the 
parameters during the course of the day were required 

in 7 of 10 subjects. None of the changes related to the 
insulin model per se but were rather associated with 
the minimal model (parameters GEZI, SI, and EGP).  
The criteria used to determine the need to change 
parameters was not overly strict: overall mean error 
less than 25 mg/dl, model-estimated peak postprandial 
glucose within 25 mg/dl of measured peak values with 
times within 0.5 h of each other, and nadir values for 
glucose excursions below 80 mg/dl to be predicted 
within 15 mg/dl with time of nadir within 0.5 h.  
The 0.5 h window was chosen based on the limited 
availability of blood glucose samples (~20 min) and to 
allow 10–20 min for subjects to consume meals. The criteria 
were empirically chosen to not be so stringent that every 
profile would be rejected and thus bias the results in favor 
of intraday variance, but to still be sufficiently stringent to 
reject a model fit that did not reproduce occurrences of 
hypoglycemia and hyperglycemia. Intraday variance was 
structured such that parameters could only assume one of 
two values in a 24 h period and only allowed for the 
three parameters (GEZI, SI, and EGP) for which evidence 
already exists in the literature for intraday variation.43–46

Although variation in model parameters was structured 
to capture putative diurnal changes in insulin 
requirement,43–46 the timing of the identified window was 
surprising in some subjects. For example, the ~18 to 22 h 
window in Figure 3D would not normally be thought of as 
coinciding with a diurnal change in insulin sensitivity. 
The window identified was in response to a lower-than-
expected postprandial glucose excursion given the 
amount of carbohydrate ingested and the amount of 
insulin on board at the time of the meal. For the example, 
plasma glucose concentration actually fell below premeal 
levels after the meal was consumed, and the profile 
could only be fit by decreasing EGP and increasing SI.  
It is possible that an acceptable fit may have been obtained 
by changing the bioavailability of the carbohydrate (AG 
in Reference 9), but this was not tested here. We have 
previously observed similar behavior in a canine closed-
loop modeling study47 and speculated that glucose 
extraction by the gut may be insulin sensitive. Ideally, 
a closed-loop controller should be able to handle either 
scenario, with an acute increase in gut extraction being 
the easier control problem, as it is equivalent to eating a 
smaller meal.

In the present study, the number of patients identified 
is too small (N = 10) to provide a sufficient range of 
parameters, and the conditions under which the model 
was shown to reproduce clinical data are too limited, 
to allow the model to be applied as the sole means of 
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comparing different algorithms or assessing preclinical 
safety. As more closed-loop studies are conducted, the 
virtual population can of course be increased, but a 
more immediate approach would be to expand the 
range of parameters identified here by increasing or 
decreasing the value of any one parameter and re-
identifying the remaining parameters in the presence 
of realistic measurement noise (~3% for glucose and 7%  
for insulin). This should allow the range of parameters 
to be expanded while ensuring each new parametric 
configuration produces a realistic subject. Having an 
identifiable model may also allow published studies to 
be used in identifying new parametric configurations. 
For example, changes in parameters that might occur 
in response to a high-fat meal such as pizza39,40 can be 
identified, or widely varying meal absorption profiles 
in the presence of carbohydrate from different sources41  
can be identified. Probably the most promising source of 
new virtual subjects may reside in the ability to identify 
the MVP model from open-loop pump and CGM data, 
for which large databases exist. The low-order submodels 
chosen as a basis for the MVP model, and the inclusion 
of intraday variance in insulin requirement, make the 
MVP model ideally suited for identifying parameters 
in subjects with different basal rates during the day or 
documented changes in fasting glucose between days 
despite the same basal rate.

Conclusion
Metabolic models are widely believed to be able to accelerate 
the design of closed-loop insulin delivery algorithms. 
We conclude that such models will need to explicitly 
describe intraday variation in metabolic parameters but 
that the model itself need not be comprised of a large 
number of compartments or differential equations. In the 
present study, a model comprised of only five equations 
was identified for 10 subjects using previously acquired  
closed-loop glucose and insulin profiles. Insulin delivery, 
insulin concentration, and plasma glucose dynamics 
were well predicted by the model (R2 > 0.9 for glucose), 
but intraday variation in insulin sensitivity, endogenous 
glucose production, and glucose effectiveness was 
required to accurately predict the high and low glucose 
values in 7 of the 10 subjects. Adding intraday variation  
increased the total number of parameters to be identified 
from 8 to 11 plus the added the meal time constants, 
but identification was still achieved using data readily 
obtained from a closed-loop study.
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