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Abstract
Glucose readings provided by current continuous glucose monitoring (CGM) devices still suffer from accuracy 
and precision issues. In April 2013, we proposed a new conceptual architecture to deal with these problems and 
render CGM sensors algorithmically smarter, which consists of three modules for denoising, enhancement, and 
prediction placed in cascade to a commercial CGM sensor. The architecture was assessed on a data set consisting 
of 24 type 1 diabetes patients collected in four clinical centers of the AP@home Consortium (a European project 
of 7th Framework Programme funded by the European Committee). This article, as a companion to our prior 
publication, illustrates the technical details of the algorithms and of the implementation issues.

J Diabetes Sci Technol 2013;7(5):1308–1318

Introduction

Subcutaneous continuous glucose monitoring (CGM) sensors are minimally invasive portable devices able to 
measure (and visualize in real time) glycemia in the interstitium almost continuously (1–5 min sampling period) for 
approximately seven consecutive days.1–5 The nature of CGM data opened the doors to the realization of investigations 
and applications that were hindered by the sparseness of self-monitoring of blood glucose (SMBG) measurements.6  
For instance, CGM data can be analyzed retrospectively to evaluate glucose variability7 and used in real time to 
generate alerts when glucose approaches, or exceeds, hypoglycemic or hyperglycemic thresholds8 (see, for instance, 
referenced work for a quantification of potential reduction of number and duration of hypoglycemic events performed  
in an in silico environment9,10 and their preliminary application in clinical research centers11–13). Moreover, CGM sensors 
are a key element of artificial pancreas (AP) research prototypes, i.e., minimally invasive systems for subcutaneous 
insulin infusion driven by a closed-loop control algorithm.14–20

However, the performance of modern CGM sensors is still considered inferior to that of SMBG measurements and 
laboratory systems.21–23 This is critical both for daily life therapy, because CGM sensors are not approved to be used in 
place of SMBG for therapy adjustment, and in research clinical trials, because the suboptimal performance of CGM 
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could negatively influence the correct functioning of applications based on it. In particular, three issues of relevance 
can be pointed out:24,25 (1) the presence of random noise makes CGM data uncertain;26–28 (2) when comparing CGM 
with “gold standard” blood glucose (BG) references measured by laboratory instruments, delays (due to blood-to-
interstitium glucose transport and sensor processing time29) and systematic underestimations/overestimations due to 
calibration problems are visible;30–33 and (3) generating alerts some time before the CGM profile crosses hypoglycemic/
hyperglycemic thresholds may help the mitigation of hypoglycemic/hyperglycemic critical events.34 

In order to better illustrate these three issues, Figure 1 shows a representative data set collected in a real type 1 
diabetes mellitus (T1DM) patient consisting of a CGM time series (blue line) measured using the SEVEN Plus system 
(Dexcom Inc., San Diego, CA), and a time series of BG references (green dots, linearly interpolated to improve their 
inspection) measured simultaneously using the laboratory YSI 2300 apparatus (Yellow Springs Instruments, Yellow 
Spring, OH). In fact, the CGM time series displayed in the picture (1) is noisy—for example, note the portion of data 
circled in red in the time window 10:00–13:00; (2) lacks accuracy—note the delay in the time window 20:00–23:00 and 
the overestimation in the time interval 07:00–11:00; and (3) would allow generation of alerts only with some delay—
compare the hypoglycemic threshold crossing of BG and CGM profiles around time 23:00.

Figure 1. Representative T1DM subject, days 3–4: CGM (blue line) and 
BG references (green dots, linearly interpolated by dashed line). Issues 
related to uncertainty, accuracy and delay (see text) are evidenced by 
red circles.

We developed the “smart sensor” architecture concept 
that consists of a commercial CGM sensor and three 
software modules placed in cascade, each one specifically 
designed to face one of the three issues presented earlier. 
The aim of the smart sensor algorithms is to render CGM 
data more reliable and more accurate, and this can be of 
great benefit for several applications, e.g., hypoglycemic/
hyperglycemic alert generation in an open-loop setting 
and AP implementations, in which uncertainty and 
accuracy of CGM data strongly influence the effective-
ness of control action. In particular, in a clinically 
oriented paper,35 we simulated the implementation of the 
smart CGM sensor concept by retrospectively applying 
algorithms developed by our research group28,36,37 for 
denoising, signal enhancement, and prediction on a 
data set consisting of 24 real T1DM patients monitored 
simultaneously with a Dexcom SEVEN Plus sensor and 
a YSI. Results demonstrated that the smart CGM sensor outperforms the original CGM sensor in terms of precision, 
accuracy, and timeliness in the generation of alerts. This paper is intended to be a companion article to the article by 
Facchinetti and coauthors,35 with the aim of illustrating the technical details of the algorithms and implementation 
issues to a more mathematically expert readership.

Architecture and Algorithms of the Smart Continuous Glucose Monitoring Sensor
The block scheme in Figure 2 shows the architecture of the smart CGM sensor (box with green background). 
Conceptually, several software modules can be placed in cascade to a commercial CGM sensor (treated and 
represented as a black-box block), but here three modules (blocks represented with white background) are considered: 
(1) the denoising module contains an algorithm aimed at attenuating measurement noise, (2) the enhancement module 
embeds an algorithm that recalibrates CGM data to improve accuracy, and (3) the prediction module presents an 
algorithm for predicting in real time the future glucose concentration and possibly generating timelier alerts.  
Specific references for each of the blocks will be quoted later. The inputs of the ensemble of smart CGM sensor 
algorithms (arrows entering the modules) are: raw glucose concentration values supplied by the CGM sensor; some 
BG references (usually SMBG measurements, exploited by the enhancement module); and, if available (such optionality is 
represented by dashed instead of continuous input arrow), other information that could be relevant, such as times of meal, 
quantity, and composition, amount of insulin injected or delivered by the insulin pump, or quantification of physical 
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exercise (which could be exploited, in addition to past glucose history, by a certain class of prediction algorithms).  
The outputs (arrows exiting from the modules) are: denoised CGM data, which are more precise than original CGM 
data thanks to the attenuation of the measurement noise component; enhanced CGM data, which are more accurate 
with reduced under/overestimations; and future glucose levels forecasted for a preset prediction horizon (PH).

The Denoising Module
The denoising module is aimed to attenuate the random noise component that corrupts CGM data, i.e., to improve 
the precision of the glucose concentration values given in output by the CGM sensor. From a practical perspective, 
improving the smoothness of CGM data without introducing significant distortion (e.g., delays) is important to reduce 
the nuisance for the patient. In fact, the greater the variance of the random noise that corrupts the CGM data, the higher 
the probability that spurious crossings of hypoglycemic/hyperglycemic thresholds occur. In addition, a noisy CGM 
signal unavoidably deteriorates the effectiveness of closed-loop control in AP applications. To reduce measurement 
noise, real-time digital filtering is needed. The main problem to be faced is the presence of interindividual and intra-
individual variability of signal-to-noise ratio on CGM data. To overcome possible suboptimality of approaches with 
fixed parameters, see referenced work;24,25,27 for more detailed review aspects and a comparison of algorithms, the 
algorithm presented by Facchinetti and coauthors28 is used. Briefly, this algorithm assumes that the CGM value 
measured at the discrete time k, i.e. y(k), can be modeled as

y(k) = u(k) + v(k),                                                            (1)

where u(k) is the true (unknown) glycemic value and v(k) is the random measurement noise, uncorrelated from 
u(k) and with zero mean and (unknown) variance equal to σ2(k) (note the dependence of the noise variance on k).  
The denoising algorithm returns the estimate û(k) by exploiting a priori information formulated in a Bayesian setting. 
In particular, a priori knowledge on the smoothness of u(t) is modeled as the double integration of white noise process

u(k) = 2u(k - 1) - u(k - 2) + w(k),                                                  (2)

Figure 2. The smart CGM sensor architecture, consisting of a CGM sensor (black block) and three software modules for denoising, enhancement, 
and prediction applied in cascade. The denoising module receives in input CGM data and returns in output a filtered CGM profile. The 
enhancement module receives in input the denoised CGM data and (few) BG references, and returns in output enhanced (i.e., more accurate) CGM 
data. Finally, the prediction module receives in input denoised and enhanced CGM data (and possibly other additional inputs) and returns in 
output the forecast of future glucose value (for a given PH) on which “preventive” hypoglycemic/hyperglycemic alerts can be generated.
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where w(k) is assumed a zero mean white noise with (unknown) variance equal to λ2(k) (note the dependence of the 
signal variance on k). Every time a new glycemic reading y(k) is produced by the CGM sensor, a window of N, with 
N < k, past CGM values is selected. Usually, N should be some tens, e.g., in the case of a 5 min sampling time, one can 
select a 3 h window, with N = 36 samples). Once N is selected, we can define the N-size vectors y = [y(k – N + 1) y(k 

– N + 2) ... y(k)], u = [u(k – N + 1) u(k – N + 2) ... u(k)], and v = [v(k – N + 1) v(k – N + 2) ... v(k)]. Let us also consider 
the covariance matrix of v depending on the scale factor σ2 (for simplicity, let us ignore, for a while, the dependence  
of σ2 and λ2 on k), i.e., ∑v = σ2B, with B-squared N-size positive definite matrix expressing our prior knowledge on the 
structure of the autocorrelation of v. For instance, B is diagonal when noise samples are uncorrelated. If knowledge 
on noise autocorrelation is available, it can be easily incorporated in B, see referenced work for a denoising problem 
where the disturbance was modeled by an autoregressive process.38 Then, according to results well established in the 
framework of Bayesian estimation theory,39 the linear minimum variance estimator û is

û = (B-1 + γFTF)-1B-1y,                                                         (3)

where F is an n × n matrix Toeplitz lower triangular matrix that, according to Equation (2), has first column given by 
[1, -2, 1 0 … 0]T, and γ = σ2/λ2 acts as a regularization parameter. A statistically based criterion is used in order to 
determine γ by fulfilling

WRSS(γ)
n – q(γ)  = 

WESS(γ)
q(γ) ,                                                          (4)

where WRSS (quadratic sum of weighted residuals) = (y - û)TB-1(y - û), WESS (quadratic sum of weighed estimates) 
= ûTFTFû, and q(γ) (equivalent degrees of freedom) = trace(B1/2(B-1+γFTF)-1B-1/2), see referenced work for proof and 
details.40,41 Then an estimate of the noise variance σ2 can be derived as

σ2 = 
WRSS(γ)
n – q(γ)  .                                                              (5)

In practice, every time a new glucose reading is produced by the CGM sensor, γ can be computed on the current time 
frame in order to deal with the dependency of σ2 and λ2 on k.

The algorithm has several remarkable features, e.g.,

 i. it is self-tunable, meaning that all unknown filter parameters σ2(k) and λ2(k) are automatically estimated without 
the need of user intervention; 

 ii. it is adaptive, i.e., the values of σ2(k) and λ2(k) used in the filtering procedure are re-estimated at any k,  
allowing the denoising module to cope with the interindividual and the intraindividual variability of the signal-
to-noise ratio;

 iii. the Bayesian embedding allows calculating the covariance matrix of the estimation error ũ = u - û, whose square 
root diagonal elements represent an estimation of the confidence interval of the denoised CGM values, which can 
be used, e.g., for alert generation or in fault detection;42

 iv. the estimate of σ2 obtained by Equation (5) gives the power of the measurement noise of the sensor, and an 
analysis of its variability with k could help in detecting portion of unreliable CGM data; and

 v. the structure of B can be chosen in order to reflect expectations/knowledge on noise autocorrelation, e.g., white 
rather than colored.

The Enhancement Module
The enhancement module is aimed to improve CGM accuracy. To do this, it is key to take into account that differences 
between reference BG measurements and CGM data as those visible in Figure 1 can be due not only to plasma-
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to-interstitial fluid glucose kinetics, but also to suboptimal calibrations and time-variance in sensor behavior.  
Many examples of proposed enhancement/calibration algorithms are available.30–33,43 In the smart sensor concept,35  
the algorithm exploited in the enhancement module is the one proposed and assessed in Guerra and coauthors.36 
Briefly, the method consists in four main steps.

(A) In the first step, we fill a vector, x, with m ≥ 2 SMBG measurements, i.e., x = {SMBG(Ti)}, I = 1, 2, … , m, and 
another vector, y, with n CGM samples, i.e., y = {CGM(tj)}, j = 1, 2, … , n, collected in the same temporal window 
containing the SMBG values, i.e., T1 ≥ t1 and Tm ≤ tn. Preferably, the window should include the glucose rising front 
after a meal to reduce the impact of possible SMBG measurement error on the calculation of the parameters of the 
linear regressor in step (C).44 The integers n and m can be viewed as user parameters.

(B) In the second step, we first assume that, at continuous time t, each CGM reading can be modeled as:

y(tj) = ∫ tj

–∞ g(tj,w)BG(w) + v(tj),                                                     (6)

where g(t,ω) is the impulse response of the BG-to-interstitial-glucose system, i.e., the hypothetical time course of 
interstitial glucose produced by a Dirac pulse BG centered at time tj, and v(tj) is zero-mean additive measurement 
noise with (unknown) variance already considered in Equations (1) and (3). While Equation (6) allows the plug-in 
of a generic structure for g(t,ω), in Guerra and coauthors,36 we exploited a time-invariant single exponential impulse 
response derived from the two-compartment model of BG-to-interstitial-glucose kinetics developed by Rebrin and 
coauthors,45 i.e., the response to a Dirac pulse centered at time 0 is

g(t) = 1
t  e– t

t  ,                                                               (7)

where τ is the time constant of the model. Then, from Equation (6), we provide estimates of BG on the same grid 
of the CGM signal, i.e., BG = {BG(tj)}, j = 1,2,...,n by a stochastic formulation of the Phillips–Tikhonov deconvolution 
method,40 which ultimately leads us to compute

BG = (GT∑v
–1G + γFTF)–1∑v

–1Gy,                                                   (8)

where ∑v = σ2B is the n × n covariance matrix expressing our prior knowledge on the structure of the autocorrelation 
of n × 1 vector v (possible structures of B were discussed in earlier), G is a lower triangular n × n Toeplitz matrix 
(having as first column the definite integrals of g(t) of Equation (7) on the CGM sampling grid), while F and γ have 
the same meaning as in Equation (3). The optimal value of γ is determined using the same criterion of Equation (4). 
Note that BG should correspond to the BG profile related to the selected portion of CGM data in case of optimal 
calibration, i.e., in absence of any error.

(C) In the third step, least squares linear regression is used to fit the m SMBG samples contained in x = {SMBG(Ti)} 
against the m-size vector ψ containing those elements that are relative to Ti (I = 1, … m):

x = a ψ + b.                                                                 (9)

In an optimal scenario, we should expect (a,b) = (1,0). In general, but in particular when the CGM sensor is not 
optimally calibrated, a and b take values different from (1,0).

(D) The estimated regression parameters (a,b) of Equation (9) are finally used to “enhance” CGM data that will be 
collected at time tk ≥ tn, as

CGMenhanced(tk) = a CGM(tk) + b.                                                  (10)

As discussed in detail by Guerra and coauthors,36 this enhancement algorithm has some advantages over other 
literature approaches:
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 i. it explicitly takes into account the influence of blood-to-interstitium glucose transport and possible delays due to 
sensor technology and denoising step before applying regression, with the advantage that the time constant τ of 
the model can be individualized to the specific patient;

 ii. all the parameters of this enhancement algorithm can be automatically determined in real time, while other 
literature procedures require an offline tuning (e.g., in the extended Kalman filter previously proposed,30,31  
the unknown covariance matrices cannot be estimated in real time);

 iii. similarly to the denoising algorithm, the structure chosen for ∑v can be chosen according to available knowledge 
on measurement noise autocorrelation.

The Prediction Module
Several prediction strategies have been proposed in the literature (see referenced work for details on the methodologies 
used37,46–51 and their application), combined with an alert generation system to prevent hypoglycemic events, performed 
in an in silico environment,9,10 and with preliminary application in clinical research centers.11–13 The architecture depicted 
in Figure 2 allows the exploitation of meal, insulin, and physical activity information, and sophisticated methods can 
be plugged in the prediction module block. Given that such information was not available in the data set studied, 
in previous work,35 we implemented the simple algorithm presented by Sparacino and coauthors37 and based an 
autoregressive model of the first order, AR(1), corresponding to the following difference equation:

y(k) = α y(k – 1) + η(k),                                                        (11)

where y(k) is the CGM value at discrete time k, α is the parameter of the model, and η(k) is a random white noise process, 
with zero mean and variance ρ2. The estimation of the parameters vector (α, ρ2) is performed in real time using a 
recursive least square strategy. All the past CGM data participate with different relative weights to the estimation of 
the parameters vector. The weighting strategy is based on a parameter μ, named forgetting factor, which can vary in 
the interval [0,1]. In the estimation procedure, the sample collected q time steps before, i.e., y(k - q), is assigned the 
weight μq. The model is then used to predict the glucose level T steps ahead ŷ(k + T), iterating the model equation for 
j = k + 1,k + 2, ... ,k + T, with η = 0, i.e.,

ŷ(k + T|k) = αT y(k).                                                         (12)

The value of μ has been fixed for all patients and determined by minimizing the performance index J.52 Specifically, 
for the Dexcom SEVEN Plus data set, the minimization of the index J returned an optimal μ = 0.925. Then, from a 
practical perspective, the predicted value at time t, ŷ (k + T|k) and the predicted value at time t - 1, ŷ(k – 1 + T|k - 1), 
are taken into account and compared with hypoglycemic and hyperglycemic thresholds. If ŷ(k – 1 + T|k - 1) ≥ 70 mg/dl  
and ŷ(k + T|k) < 70 mg/dl, a hypoglycemic threshold crossing is predicted, thus a preventive hypo-alert at time k is 
generated. Similarly, if ŷ(k – 1 + T|k - 1) ≤ 180 mg/dl and ŷ(k + T|k) > 180 mg/dl, a hyperglycemic threshold crossing 
is predicted, thus a preventive hyper-alert at time t is generated.

The principal features of the selected prediction algorithm are that

 i. it is self-tunable and adaptive, i.e., the parameter vector (α, ρ2) is estimated in real time every time a new CGM 
value is available, allowing it to adapt to variations in glucose dynamics and

 ii. a recursive algorithm implementation allows us to maintain very low memory and processing requirements.

Evaluation of the Smart Continuous Glucose Monitoring Sensor on Real Data
In the companion clinical article,35 the smart CGM sensor concept was retrospectively tested on data collected in  
24 T1DM patients within the AP@home FP7-EU project.53 Each data set consists of a 7-day profile of CGM data measured 
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using the SEVEN Plus sensor and 1-day high-frequency BG measurements (YSI 2300) collected in parallel to CGM 
during day 3 (which was spent by the patient in a clinical research center). The companion article35 provides the details 
of the protocol,35 a comprehensive discussion of the results and clinical interpretation, and the potential impact on 
diabetes treatment. Here, we will focus only on some representative examples that allow some technical considerations 
in terms of metrics usable for performance assessment.

Figure 3 illustrates a graphical example of results obtained by the denoising module on data of subject 3. The original 
CGM time series (blue line) is compared with the denoised CGM profile (red line). To improve the readability, a zoom 
of day 2 is displayed. The improvement in the smoothness of CGM and consequent reduction of spurious oscillations 
is clearly evident, e.g., in both time intervals 02:00–04:00 and 21:00–23:00. To quantify the improvement, we resort 
to the energy of second-order differences (ESOD). In fact, as well established in the context of Phillips–Tikhonov 
regularization,54 the regularity of a time series z = {z(1),z(2),…,z(N)} of length N, with samples collected in a uniform grid, 
can be measured by

ESOD(z) = SN
i=3(z(i) – 2(z – 1) + z(i – 2))2.                                            (13)

Figure 3. Results of the application of denoising module on subject 
3, day 2. Data of day 2 are plotted to improve visualization. Original 
(blue) and denoised (red) CGM data are shown.

The larger the ESOD, the less smooth the time series 
(see referenced work for use in CGM applications27,28,37,52). 
In this particular example, the ESOD value is reduced 
from 3.8 to 1.9, confirming the evident improvement. 
The boxplot of Figure 4A shows that, considering all  
24 subjects, ESOD reduction is significant, with a median 
ESOD value lowered more than 50% (from 1.4 to 0.6;  
p = .001).

With regard to the enhancement step, Figure 5 depicts 
the original CGM profile (blue), the enhanced CGM 
time series (red), and BG reference data (green dots) in 
subject 12. We focused on the time interval from 18:00 
of day 3 to 16:00 of day 4, being the time window in 
which BG references are available. The improvement 
in the accuracy of the sensor is evidently displayed in 
the reduction of the overestimation in the time interval 10:00–16:00. Of potential clinical importance is the reduction 
of the underestimation around 01:00. In fact, assuming that the unrealistic negative swing around 01:00 in CGM is 
spurious, the original CGM time series would have “potentially” triggered a false hypoglycemic alert around 01:00 
and needlessly woken up the patient. Thanks to the enhancement module, this false alert would have been avoided. 
The improvement of accuracy in subject 12 is confirmed by quantitative indexes, e.g., by a reduction of mean absolute 
relative difference (MARD) index55 from 30.6% to 6.8%. The boxplot of Figure 4B summarizes the results on the 
whole database. The median MARD value is significantly reduced from 13.1% to 9.6% (p = .003), evidence that the 
smart CGM sensor (SEVEN Plus and algorithms for denoising and enhancement, the last one exploiting the same 
number of SMBG measurements used for calibration) outperforms the basic CGM sensor (SEVEN Plus). Of note 
also is that, as evidenced in the clinically oriented article,35 the MARD value achieved by the algorithmically smart 
CGM sensor (9.6%) is lower than that of another CGM device, the Enlite sensor (Medtronic Diabetes, Northridge, CA), 
whose MARD value was estimated at approximately 13.8%.56 Similar conclusions could be drawn by considering other 
popular metrics besides MARD, such as the Clarke error grid,57 the continuous glucose error grid analysis,58 relative 
difference,23 or MARD per BG.23

Figure 6 shows an example of the prediction of future glucose concentration, performed with PH = 30 min, given in 
output by the prediction module for subject 5. Data are shown for CGM (blue line) and predicted CGM (red 
line). To improve the readability of the picture, a zoom of the time interval 07:00–15:00 of day 4 has been selected.  
One hypoglycemic alert is generated on the basis of CGM data at time 12:35 (blue arrow). The prediction module 
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Figure 4. Boxplots of selected comparison indexes. Blue and red refers to CGM and smart CGM configurations, respectively. The result of the 
application of Wilcoxon test is reported. (A) The ESOD of glucose profile. (B) The MARD of CGM data versus BG references.

Figure 5. Results of the application of enhancement module on subject 
12, days 3–4. Original (blue) and enhanced (red) CGM data and BG 
references (green dots) are shown.

Figure 6. Results of the application of prediction module on subject 5, 
day 4. Smart CGM data (blue) and real-time prediction (red) obtained 
with PH of 30 min. Vertical arrows (same color codes) indicate the 
alerts that could be generated at the crossing the hypoglycemic 
threshold. In this case, a temporal gain of 15 min in facing the event 
could be obtained thanks to prediction.

be predicted 15 min before the happening (with the possibility of acting timely to avoid, or at least mitigate, the 
event). In the whole database, a total of 60 hypoglycemic episodes were detected by CGM data. All hypo-events were 
detected correctly by the prediction algorithm. Specifically, the prediction algorithm was able to forecast 55 hypo-
events (91.6%) within the chosen PH with a positive anticipation (i.e., >0 min), meaning that almost all events were 
predicted before their occurrence (i.e., before the alert was triggered by the CGM profile). Numerically, the amount 
of time gained before the hypoglycemic threshold crossing of the smart CGM trace is 15.1 min (median value). In the 

allows generating a preventive hypoglycemic alert at 
time 12:20 (red arrow), meaning that the critical event can 
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evaluation of the performance of hypoglycemic/hyperglycemic alert generation system, it is important to quantify also 
the percentage of false alerts generated on the basis of the prediction. In this case, we assume that an alert generated 
by the prediction is a false positive if the CGM trace does not fall below the hypoglycemic threshold (70 mg/dl) in 
the following 60 min. The number of false positives generated by the algorithm is 19, which corresponds to the 25.7% 
of the total amounts of alerts. Note that the paradigm we chose for the evaluation of the alerts is simple and has 
the limitation of treating all false negatives equally, independent of the seriousness of the event (e.g., the minimum 
glucose concentration value reached in correspondence to the false alert).

Conclusions
Continuous glucose monitoring sensors are key in several applications, for instance, in systems for real-time generation 
of hypoglycemic and closed-loop algorithms for the AP. However, CGM sensor performance is still suboptimal in terms 
of accuracy and precision, and some margins of improvement are present at the algorithm level. We presented the 

“smart sensor” concept, i.e., the idea of rendering “smart” a commercial CGM sensor by placing suitable software 
modules in cascade to it. The idea was quantitatively assessed on data of 24 patients by Facchinetti and coauthors,35 
demonstrating that smoothness of CGM profile (measured by ESOD) can be improved 1accuracy (measured by MARD 
against YSI references) by approximately 27%, and anticipated hypo-events alert generation by approximately 15 min 
(with a number of false alerts of 25.7%). However, in the work of Facchinetti and coauthors,35 given the clinically 
oriented readership, there was no room for technical details, and the reproducibility of our results in other laboratories 
could thus be difficult. This articles is considered as a companion of the previous article,35 with the aim of illustrating 
the technical details of the algorithms, paying attention to implementation aspects, in order to render them fully and 
easily reproducible. 

While the architecture of the smart sensor concept of Figure 2 is general, the algorithms specifically considered in this 
article have some important features in common. The first is real-time functioning. The second is adaptability, because 
they work in cascade to any CGM sensor, independently from the manufacturer. The third is their independency, 
i.e., if one module is removed, the others still work. The modules are placed in the order displayed in Figure 2 to 
maximize the global output. In fact, before performing any enhancement to increase accuracy, it is essential to remove 
the measurement noise from CGM data to limit the propagation of measurement error. Similarly, the prediction is 
even more efficient and reliable if CGM data are both smoother and enhanced.

We can conclude that suitable real-time algorithms can render CGM sensor more reliable with possible great benefit 
in applications based on CGM devices, e.g., AP prototypes in which precision and accuracy of CGM data strongly 
influence the control action. Further margins of improvement of the algorithms can be pursued in the coming years. 
For instance, given the common framework of the denoising and the enhancement approaches, the two algorithms 
can be merged and performed in the same step to reduce the complexity. Another possible improvement concerns 
the prediction module, specifically the inclusion of additional information in the prediction algorithm (see dashed 
input arrow in the prediction module block of Figure 2), such as meals (see for example referenced work for a method 
exploiting neural networks49) or physical activity, which are not exploited by the current prediction algorithm.
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