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Abstract

Background:
As baby boomers age and their expected life span increases, there is an unprecedented need to better manage 
the health care of elders with diabetes who are at increased risk of falling due to diabetes complications, 
frailty, or other conditions. New clinical and research tools are needed to measure functioning accurately and 
to identify early indicators of risk of falling, thus translating into more effective and earlier intervention.

Methods:
The objective of this pilot study was to validate a significant change in hardware and algorithm to track 
activity patterns using a single triaxial accelerometer through validation of timed up and go and standard 
measures of balance and gait. We recruited a convenience sample of eight older adults with diabetes and  
peripheral neuropathy (age, 77 ± 7 years old) who were asked to wear the sensor for imposed daytime activity 
performed in our gait laboratory. Subjects were stratified into risk of falling categories based on Tinetti scores. 
We examined the accuracy of the suggested technology for discrimination of high- versus low-risk groups.

Results:
The system was accurate in identifying the number of steps taken and walking duration (random error <5%). 
The proposed algorithm allowed accurate identification and stratification of those at highest risk of falling, 
suggesting that subjects with high risk of falling required a substantially longer duration for rising from a 
chair when compared with those with low risk of falling (p < .05).

Conclusions:
Our new single triaxial accelerometer algorithm successfully tracked postural transition, allowing accurate 
identification of those at high risk of falling, and could be useful for intermittent or even continuous monitoring 
of older adults with diabetes. Other potential applications could include activity monitoring of the diabetes 
population with lower extremity disease and of patients undergoing surgical procedures or as an objective 
measure during rehabilitation. 
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Introduction

Physical activity level may correlate with the success or failure of treatment regimens instituted for diabetic foot 
disease and plays a significant role in the outcomes of many disparate maladies. Diabetic foot ulcers typically develop 
because of repetitive stress applied to the foot during weight-bearing activity.1–3 A reliable measure of daily physical 
activity leads to better estimates of the cumulative stress applied to the foot as well as to a more accurate evaluation of 
the efficacy of various medical and surgical treatments.4–7

Traditionally, physical activity has been defined as the total number of steps per day. However, physical activity is 
a complex phenomenon, including different sequences of activities, including both static components such as resting 
body postures (sitting, standing, and lying) and dynamic components such as walking, climbing, and running.6,7  
The objective of physical activity monitoring is to quantify posture allocations during the period of monitoring.  
Even by focusing on static postures, however, in light of the highly articulated human anatomy, the number of distinct 
postures is very high. Thus a simpler model for body postures is needed to simplify the problem and to enable 
an accurate and objective analysis of body postures.. Several authors have used a rather simple model of four basic  
body postures to classify daily activities: sitting, standing, lying, and locomotion.7,8 Most of our understanding about 
physical activity is only about the duration of walking or the number of steps per day. However, walking may 
encompass as little as 3–10% of a person’s daily physical activity and may not be representative of natural activities of 
daily living.5

Past ambulatory measurements of physical activity have been based on various motion sensors, such as pedometers, 
actometers, and accelerometers strapped on the waist, wrist, or ankle.6,9–13 These methods provide no information on 
the type of activity, however. New systems have been developed to identify the type of activity,14–16 but these methods 
are cumbersome to use during activities of daily living as they require (1) multiple sites of attachment to the body  
(2) a cable for connecting between multiple sensors, or (3) uncomfortable methods of sensor attachment (e.g., using an 
elastic band to attach the sensor to the subject’s thigh), thus reducing their usefulness for long-term monitoring of 
natural physical activity. This is because successful application of body-worn sensors for continuous daily physical 
activity monitoring requires that the subject carries the device during daily activities with no difficulty.17 Naturally, 
if the device hinders the subject’s movements because of the complexity of sensor attachments (e.g., multiple sensor 
units) or device management (e.g., limited battery life), subjects will be unwilling to carry or use it continuously 
during their daily lives.

The system proposed by Najafi and coauthors7,18 can effectively overcome some of the key limitations of the systems 
mentioned here. This system is capable of detecting body postures (sitting, standing, and lying) as well as periods 
of walking using only one small kinematic sensor (one gyroscope and two accelerometers) attached to the chest.  
The validity of this approach has been established in three separate pilot studies and by benchmarking the results 
with independent analysis by an optical motion system.7,18 This algorithm has a demonstrated overall sensitivity of 99% 
for detecting the time of various postural transitions [PTs; e.g., sit-to-stand (SI-ST) or stand-to-sit (ST-SI)], more than 
87% sensitivity and specificity for identifying the transition type (i.e., SI-ST or ST-SI), and more than 95% sensitivity 
and specificity for estimating the duration of walking and lying postures. An important limitation of the developed 
algorithm, however, is its use of a gyroscope in estimating PTs (i.e., SI-ST or ST-SI). The high power-consumption 
rates of gyroscopes, however, severely limit the applicability of the algorithm for applications outside the laboratory 
(which include everyday life applications), because such a system has an autonomy of only a few hours, thus requiring 
frequent recharging or exchanges of the battery. While additional batteries increase the device’s autonomy, they 
will also increase its size and weight and hinder the subject’s natural movements. Here we suggest an innovative 
algorithm based on using accelerometer data in place of gyroscope data, enabling long-term, autonomous operability 
of the system.

We also aim to validate the application of the proposed system in assessing risk of falling in older adults. Our previous 
study has demonstrated that PT (i.e., SI-ST and ST-SI), quantified by duration of rising or sitting on chair, can identify 
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older adults with high risk of falling from those with low risk of falling.18 The previous study, however, used a 
gyroscope to identify and quantify PT. The current study aims to explore whether quantification of PT using a triaxial 
accelerometer may also allow for discriminating older adults with low and high risk of falling.

Methods

Instrumentation and Data Logger
Acceleration data were recorded by a small data logger named PAMSys™ (physical activity monitoring system) offered 
by BioSensics LLC (Cambridge, MA). This lightweight, small sensor unit (<24 g; 5.2 × 3.2 × 1.5 cm) can be integrated 
unobtrusively into a comfortable shirt (or directly to a patient’s shirt; Figure 1) without hindering daily living activities. 
The sensor unit includes a triaxial accelerometer sensor (±2 g; FreeScale MMA7361LC; current consumption, 400 µA) 
measuring accelerations in three perpendicular directions to record accelerations in the frontal, vertical, and lateral 
directions, which are defined relative to the user (Figure 1). An embedded battery allows recording of data on  
a Micro SD (2 GB) memory unit with suitable sample-rate frequency (40 Hz), which is approximately more than 340 
h of continuous measurement. The data can be transferred to a computer via a universal serial bus reader unit for 
offline analysis.

Figure 1. PAMsys is smaller than a business card, is based on a triaxial accelerometer, can be integrated unobtrusively into a comfortable shirt, 
and has an autonomy of approximately 6 days of continuous measurement with sample frequency of 50 Hz.

Algorithms
Monitoring the user’s physical activity consists of monitoring, assessing, and quantifying the user’s postures, movements, 
trunk tilt, as well as fall-related task parameters. To this end, the system computes various parameters associated 
with the subject’s movement from the data recorded by the PAMSys unit attached to the subject’s chest (see Figure 1).  
These parameters consist of (a) the subject’s trunk tilt (specified in degrees, measuring the angle between the subject’s 
trunk axis and the axis aligned with the gravitational force; Figure 1), (b) the type of the subject’s PTs, (c) the time of the 
subject’s PTs, (d) the duration of the subject’s PTs, (e) the duration of the subject’s locomotion, (f) characterization of 
the subject’s locomotion (gait speed and number of step), and (g) the type of subject’s postures (e.g., sitting, standing, 
lying). Use of accelerometers instead of gyroscopes allows for long-term autonomous operability of the system.  
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The associated challenges introduced by this replacement, however, consist of processing the resulting noisy accelero-
meter signals during everyday living activities.

Identifying the Types of Postural Transitions and Computing Their Durations and Occurrences
The flowchart in Figure 2 and Figure 3 demonstrate the operation of the algorithms used to continuously determine the 
type, time, and duration of the subject’s PTs (in this case, SI-ST and ST-SI) during everyday movements. The algorithms 
use the frontal and vertical accelerometer signals, aF(t) and aV(t), respectively, in Figure 3A. The time-varying nature 
of the signals is shown explicitly by including the time variable t in the notation. In implementing the algorithms, the time 
variable t is necessarily discrete. 

Figure 3A shows an example of the acceleration patterns recorded by the vertical and frontal accelerometers from an 
elderly subject with a high risk of falling [aV(t), green line; aF(t), black]. As identified on the plot, the pattern consists of 
a SI-ST PT followed by a period of walking and turning, followed by another PT (ST-SI; ST-SI). As shown in Figure 3,  
the algorithm performs the following steps on the frontal accelerometer signal to determine the occurrence, duration, 
and type of the PTs:

1.	 Segmenting, followed by wavelet filtering (box 1 in Figure 3) to remove signal artifacts induced by locomotion 
(e.g., walking, climbing or descending the stairs)—see also the red trace 5 in Figure 3B, an example of the 
resulting filtered signal aF-filt(t);

2.	 Locating the local maximum peaks (denoted by aF-p 6 in Figure 3B) in the filtered signal aF-filt(t) 5 through a peak-
detection algorithm—this step corresponds to box 2 in Figure 2;

3.	 For each PT, corresponding to a particular aF-p 6, computing an initial estimate of the PT duration (∆T1) by (see 
boxes 3 and 4 in Figure 2)

i.	 determining whether aF-p is greater than a predefined threshold Th1;

ii.	 if yes, locating the local minima in aF-filt(t), within a specified time window, that precede and follow the 
particular maximum peak aF-p—see Figure 3B;

iii.	 computing ∆T1 as the duration of the resulting time interval I1, separating the local minima computed earlier.

These steps suppress and remove signal artifacts, such as the noisy peaks associated with shocks and other locomotion 
activities. Following the initial determination of the PT duration (∆T1), the system computes a more accurate estimate 
of the PT duration, ∆T2, by applying additional filters to the frontal acceleration signal only within a time interval that 
is centered at I1, but that is typically 10% to 30% longer in duration than ∆T1. Such filtering of the frontal acceleration 
signal significantly decreases the requisite calculation costs, enabling real-time implementation of the algorithm.  
If the value ∆T1 surpasses a defined threshold, Th2 (box 5 in Figure 2), the following steps are performed on the 
frontal accelerometer signal aF(t) only during a time interval that is centered at I1 but is typically 10% to 30% longer in 
duration:

1.	 as represented by box 6 in Figure 2, low-pass filtering of the aF(t) signal during the time interval I1 by a wavelet;

2.	 as represented by box 7 in Figure 2, locating the maximum peak (aF-p2) in the resulting filtered signal aF-filt2(t) 
during time interval I1 (see Figure 3C); 

3.	 within a specified time window, locating a local minimum in aF-filt2(t) closest to, and preceding, the particular 
maximum peak aF-p2 (box 7 in Figure 2);

4.	 within a specified time window, locating a local minimum in aF-filt2(t) closest to, and following, the same 
maximum peak (box 7 in Figure 2);
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Figure 2. Flow chart diagram of the algorithm for identifying SI-ST and ST-SI PTs and the parameters associated with each transition.
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Figure 3. An example of identifying the SI-ST and ST-SI PTs and the parameters associated with each PT during a TUG test.
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5.	 computing ∆T2 (see Figure 3C) as the duration of resulting time interval I2 separating the local minima computed 
earlier (box 7 in Figure 2).

The time of the maximum peak aF-p2 represents the time of the PT, and ∆T2 represents the estimate of the duration of the 
PT. For each PT, following the computation of its time of occurrence and its duration, the system uses the step-by-step 
algorithm described here to identify its type (e.g., ST-SI or ST-SI):

1.	 as represented by boxes 9 and 10 in Figure 2, for each PT, if ∆T2 exceeds a predefined threshold Th3, estimate the  
trunk tilt angle in the sagittal plane, θ, using a low-pass filtering of the aF(t) signal during corresponding time 
interval I2. Because aF(t) consists of a θ-dependent gravitational component and a higher frequency, pure frontal-
acceleration component, low-pass filtering removes the pure frontal-acceleration component, leading to a quantity 
proportional to sin (θ); 

2.	 estimate time-varying inertial frontal and vertical accelerations aF-interial(t) and aV-interial(t) through the following 
coordinate transformation (see box 11 in Figure 2):

⎡
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= + ,

where g represents the gravitational constant (9.81 m/s2)—see also Figure 1 for a free-body diagram showing the 
inertial acceleration components;

3.	 in parallel, apply an adequate, cascaded low-pass filter to remove the artifacts from aV(t), where the low-pass 
filter functions as follows:

i.	 remove the gravitational component of aV(t) 12 (Figure 3E) using the following equations (see also box 11 in 
Figure 2):

aF(t) = [aV – inertial(t) + g]sin(q(t)) + aF – inertial(t)cos(q(t)),

aV(t) = [aV – inertial(t) + g]cos(q(t)) – aF – inertial(t)sin(q(t)),

and aV – filt(t) = [aF(t)]2 + [aV(t)]2 ,

ii.	 low-pass filtering of the resulting signal aV-filt(t), leading to aV-filt2(t); and

iii.	 filtering this signal by a moving-average filter to obtain aV-filt3(t) (see also box 12 in Figure 2);

4.	 as exemplified in Figure 3E and 3F, determine the local peaks in aV-filt3(t) using a peak-detection algorithm (box 13 
in Figure 2); the resulting positive and negative peaks—Pmax 15 and Pmin 16, respectively—exceeding predefined 
threshold Th4, are identified (boxes 14 and 15 in Figure 2);

5.	 classify the detected PT as SI-ST or ST-SI through the sequence by which Pmax and Pmin occur, e.g., a Pmax followed 
by a Pmin identifies the PT as a SI-ST pattern (box 16 in Figure 2; see also Figure 3E and 3F);

6.	 apply a postprocessing algorithm to prevent misclassification of postures and PTs—for each PT, the classification  
as ST-SI or SI-ST will be corrected based on the preceding and subsequent sequences of PTs.

Analyzing Gait and Identifying the Corresponding Walking Periods and Number of Steps
Using data recorded by the accelerometers, an algorithm was developed to distinguish left and right gait steps, as well 
as estimate the gait cycle time and gait speed. The algorithm consists of the following steps:
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1.	 remove from consideration data during time periods associated with PTs and lying;

2.	 compute the time-varying norm (i.e., time-varying magnitude) of the vertical and horizontal accelerometer 
signals as

aF(t) = [aV – inertial(t) + g]sin(q(t)) + aF – inertial(t)cos(q(t)),

aV(t) = [aV – inertial(t) + g]cos(q(t)) – aF – inertial(t)sin(q(t)),

and aV – filt3(t) = [aF(t)]2 + [aV(t)]2 ,

where θ(t) represents the time-varying trunk angle and aV-inertial(t) and aF-inertial(t) represent the time-varying vertical and 
frontal acceleration components, respectively;

3.	 remove the gravitational component from the vertical acceleration signal in two steps: first, use formula stated in 
step 2 to compute aV-filt3(t), second, band-pass filter the result, leading to aV-filt4(t) (see Figure 4C);

4.	 identify gait steps as the peaks 4 (see, Figure 4C) in the aV-filt4(t) signal;

5.	 verify the sequence of the detected peaks according to predefined conditions for gait patterns;

Figure 4. Illustration of an example of step detection using our 
suggested algorithm.

6.	 distinguish left and right steps using the signal aL(t) 
from the lateral accelerometer—specifically, (i) the 
subject’s lateral velocity vL(t) is computed by 
integrating aL(t) during the recognized walking 
periods and (ii) the relationship between the 
locations of the positive and negative peaks in vL(t) 
with the identified peak in the filtered vertical 
acceleration signal, aV-filt4(t), allows for left and right 
steps be distinguished.

This algorithm also enables both the recognition of 
undetected gait steps and the removal of false detected 
steps. Gait speed (i.e., stride velocity) is computed using 
information from the detected step time and the amplitude 
of acceleration during each gait cycle.

Detecting and Classifying the Lying Posture
The algorithm distinguishes lying from sitting and 
standing by comparing the orientation of vertical accelero-
meter signal aV(t) to that of the gravitational component. 
While the vertical accelerometer measures almost zero 
during lying periods, its value is significantly greater 
during sitting and upright postures—in some cases, the 
value is close to the gravitational constant.

Physical Activity Classification
The algorithms described here will classify the subject’s 
physical activity and posture. In addition, several rules 
will be applied to improve the classifications performed 
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by the discussed algorithms. These rules include the following:

1.	 If two contradictory states are detected (e.g., lying with walking or sitting with walking), preference is first 
given to lying, then to walking, and finally to PTs. This rule is based on the rationale that the lying posture 
is classified with the least amount of error. It should be noted that since the algorithms for different postural 
detections operate independently, two contradictory sets of activities may be identified. 

2.	 Two successive PTs classified as the same type (e.g., SI-ST followed by SI-ST) are not possible—the classifications 
are modified according to the preceding and subsequent activities.

3.	 Elderly subjects cannot lean backward after an SI-ST transition with a high likelihood. The algorithm estimates 
the trunk lean angle based on the trunk angle before (θPT-pre) and/or following (θPT-post) the PT. 

i.	 Both θPT-pre and θPT-post are estimated based on the mean (E[.]) of the frontal acceleration by calculating the 
average of the signal over the rest period immediately before or after a PT, according to the following 
formulas:

θPT – pre = sin–1(E[aF(t)|pre – PT – rest]),

θPT – post = sin–1(E[aF(t)|post – PT – rest]),

where E[aF(t)|pre – PT – rest] denotes the mean of the frontal acceleration signal during the rest period 
immediately before the PT and E[aF(t)|post – PT – rest] denotes the corresponding mean after the PT.

ii.	 If the standard deviation of both frontal and vertical accelerations during a local interval before or after a PT 
were lower than a pre-defined threshold, the algorithm will classify that duration as a rest period.

iii.	 Sensor inclination (θinitial) is computed from the average of the frontal accelerometer signal during a 
recognized walking episode containing at least 10 steps: θinitial = sin–1(E[aF(t)|walking; 10 steps]). 

iv.	 The backward-leaning state is detected if subtracting θinitial from θPT-pre (or θPT-post) yields a value lower than a 
predefined threshold.

4.	 The duration of the lying posture should be more than a specified length (e.g., 30 s). 

5.	 For an episode to be classified as “walking,” it must include at least three successive steps within a predefined 
interval.

6.	 Since it is improbable for a person, especially an elderly subject, to stand for long periods without any movements, 
long standing periods without additional activity (e.g., more than 3 min) are interpreted as sitting. This rule 
applies if the standard deviations of both the vertical and frontal accelerations are below predefined thresholds.

Assessing Risk of Falling
Risk of falling was assessed based on the concept suggested by Najafi and coauthors18 using the information extracted 
from PT. However, a new algorithm was design to quantify PT using the information from the accelerometer instead 
of the gyroscope, as described earlier. In summary, PT duration was defined by the interval initiated by the trunk 
leaning forward and terminated by the trunk leaning backward until reaching upright trunk posture. The average 
duration of PT as well as the number of unsuccessful attempts for rising from a chair were used for assessing the risk 
of falling. We assumed elderly subjects with a high risk of falling required a longer time to rise from a chair than 
elderly subjects with low risk of falling.
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Experimental Setup
Eight elderly volunteers (older than 65 years, six females and two males, all diagnosed with diabetes with peripheral 
neuropathy) were recruited. Based on an evaluation of balance and gait (Tinetti score), four subjects were stratified to 
high risk (Tinetti score less than 21 over 28) or low risk of falling (Tinetti score >25 over 28).19 Subjects were asked to 
perform a set of predefined activities based on classical timed up and go (TUG) test protocol using a single observer 
(Figure 5) while wearing the sensor, which was integrated in a comfortable shirt.

Figure 5. Illustration of the TUG test.

The exact time of each PT, as well as the duration of 
walking and number of taken steps, were recorded by an 
observer using an embedded program integrated into 
a personal digital assistant. These data were used to 
validate the accuracy of our algorithms for identifying 
PTs and their duration and type (i.e., SI-ST or ST-SI) and 
number of steps. Additionally, we examined whether our 
algorithm enables identification of older adults with high 
risk of falling.

Statistical Analysis
To compare the reference system (observer report) with the suggested algorithm, systematic and random errors were 
calculated by calculating the average of errors and the standard deviation of errors, respectively. Additionally, the 
accuracy of the algorithm for classification of PT (SI-ST or ST-SI) was examined using sensitivity and specificity of the 
algorithm for PT classification. Considering the small sample size, we used nonparametric Mann–Whitney U-test to 
compare the duration of PT as well as TUG test scores between the two groups. Because the sample size was small, 
we used the “exact” method instead of the “approximate” method for estimating the p value. Finally, the correlation 
between PT duration and the Tinetti score or TUG test duration was evaluated using Pearson correlation of coefficient. 
For all tests, an alpha level of 0.05 was considered statistically significant. All calculations were made using MATLAB 
(MathWorks, Ver 7.4 (R2007a)).

Results
Overall, 16 PTs were gathered, including eight SI-ST and eight ST-SI transitions. All PTs associated with TUG test were 
correctly identified. Initially, two SI-ST and three ST-SI were misclassified. However, applying the physical activity 
classification rules described earlier, all misclassified PTs were correctly classified into SI-ST or ST-SI (100% sensitivity 
and specificity for PT classification to sitting or standing). Our algorithm accurately identified the duration of the 
TUG test. The systematic error for estimating TUG duration was 0.40 s (0.85%), and the random error was 0.70 s (3.6%).  
Our algorithm additionally enables an accurate measurement of the walking period (random error = 4.6%) and the 
number of taken steps (maximum number of missing steps = 1).

Table 1 summarizes the results related to the risk of falling assessment in the enrolled subjects. As expected, the 
duration of the TUG test was significantly higher in the group with a high risk of falling (p = .028). The average 
duration of the TUG test in the high-risk group was 62.0 ± 8.9 versus 26.1 ± 2.0 s in low risk of falling group.  
Figure 6 illustrates the average SI-ST and ST-SI PT duration for the high and low risk of falling groups. Interestingly, 
the duration of SI-ST was significantly higher in the high-risk group (p < .05): the average duration for rising from a 
chair in the high-risk group was, on average, 124% higher than the low-risk group. Although the duration of ST-SI 
was, on average, 80% higher in the high-risk group, the observed increase was not significant (p = .34). In both groups, 
the duration of sitting on the chair was moderately higher than rising from a chair. This observed tendency was not 
significant for both groups, however (p > .05).

Figure 7 illustrates the relationship between SI-ST duration and Tinetti score (Figure 7A) as well as TUG test duration 
(Figure 7B) for all subjects. The relationship between TUG duration and Tinetti score has been illustrated in Figure 7C.  
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Table 1.
Assessing Risk of Falling in Elderly Adults by Measuring Postural Transition Duration

Age Gender Tinetti score TUG duration SI-ST ST-SI

Low risk of falling

Subject 1 76 Female 28 24.47 2.18 2.16

Subject 2 75 Female 26 24.35 1.70 3.0

Subject 3 77 Female 28 27.25 1.88 3.47

Subject 4 66 Female 26 28.38 2.06 2.32

Mean ± standard deviation 73.5 ± 5.0 27.0 ± 1.2 26.1 ± 2.0 1.95 ± 0.22 2.73 ± 0.61

High risk of falling

Subject 5 71 Male 21 69.60 5.39 5.39

Subject 6 91 Female 19 50.30 5.70 8.48

Subject 7 84 Female 17 59.82 3.92 4.52

Subject 8 76 Male 18 68.20 2.4 0.91

Mean ± standard deviation 80.5 ± 8.8 18.8 ± 1.7 62.0 ± 8.9 4.37 ± 1.53 4.92 ± 1.55

Figure 6. Comparison of PT duration between older adults with low 
and high risk of falling.

Figure 7. Comparison between (A) SI-ST duration and Tinetti score, (B) SI-ST duration and TUG test duration, and (C) TUG test duration and 
Tinetti score.

Results suggest a relatively high correlation was observed between SI-ST and the Tinetti score (r = -0.65; 95% confidence 
interval [CI], -0.92, 0.09; p = .08) as well as TUG test duration (r = 0.67; 95% CI, -0.06, 0.93; p = .07). In addition, results 
demonstrate an excellent correlation between the Tinetti score and TUG test duration (r = -0.89; 95% CI, -0.98,-0.51;  
p = .003).

Discussion
For comorbidly ill elders, geriatric syndromes are 
often more important considerations in maintaining 
independence and functioning than are diseases, per se.  
Remaining physically active is a key feature in the 
function and quality of life of the elderly; physical activity 
is an important indicator of wellbeing, and changes in 
activity are important early indicators of changes in health  
state (as occurring with increasing frailty and risk of 
falling, for example). This is especially true in cases of  
(1) posthospitalization in-home reconditioning, (2) medi-
cation regimen changes requiring careful monitoring,  
(3) fall monitoring, (4) prescriptive daily acitivity monitoring 
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to sustain conditioning in prefrail patients, and (5) insomnia and nightime activity. Activities of daily life, perceived 
disability, and quality of life are currently assessed by validated tools, which are mostly questionnaire based.  
While these methods have been shown to be reliable, have become generally accepted, and are increasingly used,  
they rely on the patients’ subjective assessments, are time-consuming to complete, and provide episodic cross-sectional 
data rather than just-in-time information targeted to critical clinical triggers. A reliable and valid method for the 
measurement of long-term spontaneous physical activity in daily life will provide an instrument of unprecedented 
objectivity, with far-reaching scientific applications and the ability to evaluate the efficacy of various medical, surgical, 
and psychosocial treatments and management strategies.

Physical activity has been traditionally defined as the total number of steps per day. However, as previously discussed, 
walking may comprise little of a person’s total daily physical activity and is an important but minor component of 
total daily activity.20 Several systems have been developed to identify the type of physical activity,14–16 but these 
methods are cumbersome, as they require two or more different sites of sensor attachment to the body and hence 
are less suitable for elderly care applications. Indeed, to be most useful for long-term monitoring of the elderly and 
telecare applications, the user must be able to carry on with his/her natural daily activities, unhampered. If the device 
poses any hindrance to the subject’s movements, due to either the complexity of sensor attachments (e.g., multiple 
sensor units) or device management (e.g., limited battery life), elderly people may be unable or unwilling to carry it 
continuously during their daily lives.

Najafi and coauthors7 suggested an algorithm for monitoring daily physical activity that is capable of detecting body 
postures (sitting, standing, and lying) as well as periods of walking using only one small kinematic sensor (one 
gyroscope and two accelerometers) attached to the chest. An important limitation of the developed algorithm, however, 
is the necessity of using a gyroscope for estimating PTs (i.e., SI-ST or ST-SI). The sensor’s resulting high-energy 
consumption rate significantly limits the autonomy of the system. Additionally, the current algorithm is ill suited for 
real-time and remote telemonitoring applications because its calculation costs are too high due to the incorporation of 
complex filtering schemes.

The results of this study demonstrate that a single wearable sensor attached to the chest and based on only a triaxial 
accelerometer performed very well in monitoring activities and in assessing the risk of falling in older subjects. 
This system was able to identify PT, sitting, standing, lying, and walking as well as the number of steps taken. 
Substituting an accelerometer for a gyroscope allows economization in power consumption by a factor of more 
than three. The suggested cascade filters used in place of the complex filtering scheme used in the initial algorithm 
additionally lowered the calculation cost by a factor of more than two. Specifically, the current algorithm does not 
require any integration and drift removal algorithms, which were used in the previous study for identifying the PT 
using gyroscope sensor. Additionally, instead of using a very complex filter for estimating the duration of PT and 
its classification, several low-cost moving average filters were used. This facilitates the direct implementation of the 
suggested algorithms in a low-power microcontroller for real-time application purposes.

Our results also confirmed the initial finding reported by Najafi and coauthors18 in which they demonstrated that 
the duration of rising from a chair in older adults with high risk of falling is longer than older adults with low risk 
of falling. This can be explained by the fact that elderly people who fall have slower movements due to reduced 
peak hip extension and increased pelvic tilt as well as higher postural during PT.21–23 Despite an observed increase 
in the duration of PT from sitting to standing in the high-risk group, this increase was not significant in our study.  
This could be partially explained by the limited sample size in our study. Alternatively, a relatively high variation 
observed for intersubject PT duration for sitting down on a chair can be explained by the usual weakening of the 
hamstring in the high-risk group, causing a fast transition to sitting down or falling on a chair.

This new monitoring device minimally interferes with the usual activity of the subjects because it is lightweight and 
wireless. Monitoring the subject in his/her usual environment with minimal interference is, therefore, possible, 
in contrast with other systems that can be used only in laboratory settings. The current autonomy of the system 
allows continuous recording for up to 2 weeks. Where necessary, the battery could be easily recharged for extended 
monitoring. Alternatively, a more powerful battery could be used to improve the battery life. 



1159

Novel Wearable Technology for Assessing Spontaneous Daily Physical Activity and Risk of Falling in Older Adults with Diabetes Najafi

www.jdst.orgJ Diabetes Sci Technol Vol 7, Issue 5, September 2013

The results of this study have some limitations. First, we used a small number of subjects, and these results would 
need to be confirmed with a larger sample. Second, these subjects were a convenience sample and may not be 
representative. Third, the device was assessed during short-term monitoring and an imposed set of activities (TUG test). 
Another study should validate the device in the home environment and over longer periods of monitoring. Finally, 
although the subjects were encouraged to move as usual for them, we cannot exclude the possibility that their activity 
was influenced by the fact they were participating in a study while confined to a gait laboratory. Despite these  
limitations, we believe this system has the potential for extended clinical as well as research applications. In particular, 
this system could help better document subject mobility, an important component of the quality of life. An objective 
method for clinically relevant remote monitoring of activity organization inclusive of clearly communicated 
individualized targets and triggers by noninvasive physical activity telemonitoring has not yet been developed. Such 
technology would enable remote and continuous screening during daily life, supporting independence, functioning, 
and quality of life while providing important clinical triggers for “just-in-time” clinical intervention.

Additionaly, the suggested technology could assist health care providers in diabetic foot ulcer prevention as well as 
clinical management of the diabetic foot disease via controlling the foot loading condition as well as the organization 
of activity. The most common reason for hospitalization among diabetes patients is foot ulceration. The repetitive trauma 
associated with physical activity is responsible for a majority of these ulcers. Although several studies have utilized 
commercially available pedometers to better understand this etiology,24–28 those devices can only track the number of 
steps taken per day. During standing, the foot is also under considerable stress, therefore likely increasing ulceration 
and/or reulceration risks. The suggested system measures both periods of walking and standing, thus assessing 
foot loading in diabetes patients at risk of foot ulceration as well those who already developed diabetic foot ulcers 
during daily living. Furthermore, a study performed by Armstrong and coauthors26 led to the hypothesis that when 
assessing ulceration risk, the absolute volume of physical activity may be less important than the daily variability.  
It would therefore stand to reason that furthering the role of physical activity fluctuation over several days could 
hugely benefit the clinical management of the diabetic foot disease. Thus, the suggested system could be beneficial for 
smart management of diabetic foot disease and for foot ulcer prevention.

Conclusion
Here we proposed a novel technology based on a single wearable sensor, housing only an accelerometer that allows 
monitoring of all three main postures (i.e., sitting, standing, and lying), PTs (SI-ST and ST-SI), their durations, and 
the duration of walking and the number of steps taken. In addition, the proposed algorithm enables quantifying 
PT via measuring its duration, which is initiated by the trunk leaning forward and terminated by the trunk leaning 
backward to achieve upright posture. The results suggest that the postural-transition duration for rising from a chair 
increases with increased risk of falling. Thus daily monitoring of PT could offer an objective assessment of the risk of 
falling in older adults using a single wearable sensor based on a triaxial accelerometer.
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